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H∞ and its subspaces

This time, let us look at

ball (X ) := {f ∈ X : ‖f ‖∞ ≤ 1},

for certain subspaces X of H∞.

Since H∞ ⊂ L∞ = L∞(T), we begin by recalling that the extreme
(and exposed) points of ball (L∞) are precisely the unimodular
functions.

As to ball (H∞), we have the following classical result.

Theorem

Let f ∈ H∞ and ‖f ‖∞ = 1. TFAE:
(i) f is an extreme point of ball (H∞).
(ii)

∫
T log(1− |f (ζ)|) |dζ| = −∞.
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H∞ and its subspaces

A piece of notation: given a function ϕ ≥ 0 on T, with logϕ ∈ L1(T),
we write Oϕ for the outer function with modulus ϕ. That is,

Oϕ(z) := exp

{
1

2π

∫
T

ζ + z

ζ − z
logϕ(ζ) |dζ|

}
, z ∈ D.

Proof. (i) =⇒ (ii). If (ii) fails, then log(1− |f |) ∈ L1 and we put
g := O1−|f |.

Then g ∈ H∞ and |g | = 1− |f | on T, so ‖f ± g‖∞ ≤ 1; and since

f =
1

2
(f + g) +

1

2
(f − g),

we see that f is non-extreme.
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H∞ and its subspaces

(ii) =⇒ (i). Suppose that ‖f ± g‖∞ ≤ 1 for some g ∈ H∞. Assuming
(ii), we want to show that g ≡ 0.

We have
2|f |2 + 2|g |2 = |f + g |2 + |f − g |2 ≤ 2,

whence |g |2 ≤ 1− |f |2 on T.

Since ∫
T

log(1− |f (ζ)|2) |dζ| = −∞,

we deduce that
∫
T log |g(ζ)| |dζ| = −∞ and so g ≡ 0.
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H∞ and its subspaces

Remark. Let A := H∞ ∩ C (T) be the disk algebra. The extreme
points of ball (A) are again characterized, among the unit-norm
functions f ∈ A, by condition (ii).

The exposed points of ball (H∞) have also been described.

Theorem (Amar & Lederer, 1971)

Suppose f ∈ H∞ and ‖f ‖∞ = 1. Then f is an exposed point of ball (H∞)
if and only if the set {ζ ∈ T : |f (ζ)| = 1} has positive measure.

The proof makes use of maximal ideals, etc.

The exposed points of ball (A) are characterized by the same
condition (Phelps, 1965).
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Functions with large spectra

Given a set Λ ⊂ Z+ and a function f ∈ H∞, we write f ∈ H∞(Λ) to
mean that f̂ (k) = 0 for all k /∈ Λ.

In other words,

H∞(Λ) := {f ∈ H∞ : spec f ⊂ Λ}.

The situation is especially simple if Z+ \ Λ is a finite set.

Theorem

Let Λ be a subset of Z+ with #(Z+ \ Λ) <∞. Suppose also that
f ∈ H∞(Λ) and ‖f ‖∞ = 1. TFAE:

(i) f is an extreme point of ball(H∞(Λ)).

(ii)
∫
T log(1− |f (ζ)|) |dζ| = −∞.
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Functions with large spectra

Remark. This is in stark contrast to the situation with H1, where
even a single spectral hole makes things different.

Proof. (ii) =⇒ (i). This is obvious. Indeed, under condition (ii), f is
even extreme in ball (H∞) and hence, a fortiori, in the smaller set
ball(H∞(Λ)).

(i) =⇒ (ii). Assuming that (ii) fails, put g := O1−|f |. Thus, g ∈ H∞

and |g | = 1− |f | on T.

Now let
m := #(Z+ \ Λ)

and write Pm for the set of polynomials of degree at most m.
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Functions with large spectra

We claim that there exists p0 ∈ Pm, p0 6≡ 0, such that gp0 ∈ H∞(Λ).

To see why, write
Z+ \ Λ = {k1, . . . , km},

where k1, . . . , km are pairwise distinct integers.

Consider the linear operator T : Pm → Cm defined by

Tp :=
(

(̂gp)(k1), . . . , (̂gp)(km)
)
, p ∈ Pm.

Because dimPm = m + 1, while the rank of T does not exceed m,
the rank-nullity theorem tells us that KerT has dimension at least 1
and is therefore nontrivial.
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Functions with large spectra

Thus, we can find a polynomial p0 ∈ KerT with 0 < ‖p0‖∞ ≤ 1.

We have then

(̂gp0)(k1) = · · · = (̂gp0)(km) = 0,

so gp0 is a nontrivial function in H∞(Λ).

Also,
|f ± gp0| ≤ |f |+ |g ||p0| ≤ |f |+ |g | = 1,

whence f ± gp0 ∈ ball(H∞(Λ)).

The identity

f =
1

2
(f + gp0) +

1

2
(f − gp0)

now shows that f is non-extreme in ball(H∞(Λ)).
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Functions with large spectra

A similar result holds for A(Λ) := H∞(Λ) ∩ A, where A is the disk
algebra:

Proposition

Given a set Λ ⊂ Z+ with #(Z+ \ Λ) <∞, the extreme points of
ball(A(Λ)) are precisely the unit-norm functions f ∈ A(Λ) satisfying (ii).

Question. For which sets Λ ⊂ Z+ is it true that the extreme points f
of ball(H∞(Λ)) are still characterized by∫

T
log(1− |f (ζ)|) |dζ| = −∞ ?

Such Λ’s should be suitably thick in Z+, but Z+ \Λ need not be finite.
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Functions with small spectra

Now suppose that Λ ⊂ Z+ and #Λ <∞.

We shall write P(Λ), or occasionally P∞(Λ) (rather than H∞(Λ)), for
the space of lacunary polynomials of the form

p(z) =
∑
k∈Λ

p̂(k)zk

that arises.

As obvious examples of extreme points of ball(P∞(Λ)) we mention
the monomials z 7→ czk , with k ∈ Λ and c a unimodular constant.
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Functions with small spectra

We may assume that

Λ = {0, 1, . . . ,N} \ {k1, . . . , kM}

for some positive integers N and kj (j = 1, . . . ,M) with

k1 < k2 < · · · < kM < N.

When M = 0, the corresponding P(Λ) space reduces to PN
(the non-lacunary case).
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Functions with small spectra

Now suppose p ∈ P(Λ) is a polynomial, other than a monomial, with
‖p‖∞ = 1.

Our criterion for p to be extreme in ball(P∞(Λ)) will be stated in
terms of a matrix M =MΛ(p), which we now construct.

Let ζ1, . . . , ζn be an enumeration of the (finite and nonempty) set
{ζ ∈ T : |p(ζ)| = 1}. Viewed as zeros of the function

τ(z) := 1− |p(z)|2, z ∈ T

(or equivalently, of the polynomial zNτ), the ζj ’s have even
multiplicities, which we denote by 2µ1, . . . , 2µn respectively.
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Functions with small spectra

The µj ’s are therefore positive integers. We then put

µ :=
n∑

j=1

µj and γ := µ/2.

Since zNτ ∈ P2N , it follows that µ ≤ N.

For each j ∈ {1, . . . , n}, we consider the Wronski-type matrix

Wj :=


ζ
γ
j p(ζj) ζ

γ+1
j p(ζj) . . . ζ

N−γ
j p(ζj)

(zγp)′ (ζj)
(
zγ+1p

)′
(ζj) . . .

(
zN−γp

)′
(ζj)

...
...

...
...

(zγp)(µj−1) (ζj)
(
zγ+1p

)(µj−1)
(ζj) . . .

(
zN−γp

)(µj−1)
(ζj)

 .
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Functions with small spectra

This Wj has µj rows and N − µ+ 1 columns. The derivatives are
taken with respect to the real parameter t = arg z .

We also need the real matrices

Uj := ReWj and Vj := ImWj (j = 1, . . . n).

The rest of the construction involves the polynomial

r(z) :=
n∏

j=1

(z − ζj)µj

and its coefficients r̂(k) with k ∈ Z.

(For k < 0 and k > µ, we obviously have r̂(k) = 0.)
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Functions with small spectra

From these, some further matrices will be built.

Namely, we introduce the M × (N − µ+ 1) matrix

R :=

 r̂(k1) r̂(k1 − 1) . . . r̂(k1 − N + µ)
...

...
...

...
r̂(kM) r̂(kM − 1) . . . r̂(kM − N + µ)

 .

along with the real matrices

A := ReR and B := ImR.
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Functions with small spectra

Finally, we define the block matrix

M =MΛ(p) :=


A −B
B A
U1 V1
...

...
Un Vn

 ,

which has 2M + µ rows and 2(N − µ+ 1) columns.
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Functions with small spectra

Now, the result is:

Theorem

Given a finite set Λ ⊂ Z+ as above, suppose that p is a unit-norm
polynomial in P∞(Λ) distinct from a monomial. Then p is an extreme
point of ball(P∞(Λ)) if and only if rankMΛ(p) = 2(N − µ+ 1).

Remark. Even when Λ = {0, 1, 2}, the rank condition is unlikely to
admit a considerable simplification. Indeed, we can find unit-norm
polynomials p1, p2 in P2 satisfying

1− |p1(z)|2 = 2
(
1− |p2(z)|2

)
, z ∈ T,

and such that p1 is non-extreme for ball(P2), while p2 is extreme.

E.g., take p1(z) = 1
2 (z2 + 1) and p2(z) = 1

2
√

2
(z2 + 2iz + 1).
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Open questions

A few questions, to conclude with:

(1) What happens in higher dimensions (say, on Td in place of T)?

(2) What happens on the line (i.e., on R in place of T)?

(3) What about H1
Λ and H∞Λ when neither Λ nor Z+ \ Λ is finite?

(4) What happens between H1 and L1? More precisely, for which sets
E ⊂ Z− does the unit ball of

{f ∈ L1 : spec f ⊂ (Z+ ∪ E )}

have extreme points?

(5) What are the extreme points in the model space K∞θ ?
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Last slide

∼∼∼ Snip, snap, snout, this tale’s told out. ∼∼∼

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ The End ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∼∼∼ THANK YOU ! ∼∼∼
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