GEOMETRY OF THE UNIT BALL IN VARIOUS HOLOMORPHIC SPACES Lecture 3

Konstantin Dyakonov

ICREA & Universitat de Barcelona

St. Petersburg December 2, 2021

K. M. Dyakonov (ICREA & UB)

• This time, let us look at

$$\text{ball}(X) := \{ f \in X : \|f\|_{\infty} \le 1 \},\$$

for certain subspaces X of H^{∞} .

This time, let us look at

$$\operatorname{ball}(X) := \{ f \in X : \|f\|_{\infty} \le 1 \},\$$

for certain subspaces X of H^{∞} .

• Since $H^{\infty} \subset L^{\infty} = L^{\infty}(\mathbb{T})$, we begin by recalling that the extreme (and exposed) points of ball (L^{∞}) are precisely the unimodular functions.

This time, let us look at

$$\operatorname{ball}(X) := \{ f \in X : \|f\|_{\infty} \le 1 \},\$$

for certain subspaces X of H^{∞} .

- Since H[∞] ⊂ L[∞] = L[∞](T), we begin by recalling that the extreme (and exposed) points of ball (L[∞]) are precisely the unimodular functions.
- As to $\operatorname{ball}(H^{\infty})$, we have the following classical result.

Theorem

Let
$$f \in H^{\infty}$$
 and $||f||_{\infty} = 1$. TFAE:
(i) f is an extreme point of ball (H^{∞}) .
(ii) $\int_{\mathbb{T}} \log(1 - |f(\zeta)|) |d\zeta| = -\infty$.

A piece of notation: given a function φ ≥ 0 on T, with log φ ∈ L¹(T), we write O_φ for the outer function with modulus φ. That is,

$$\mathcal{O}_{arphi}(z) := \exp\left\{rac{1}{2\pi}\int_{\mathbb{T}}rac{\zeta+z}{\zeta-z}\logarphi(\zeta)\left|d\zeta
ight|
ight\}, \qquad z\in\mathbb{D}.$$

A piece of notation: given a function φ ≥ 0 on T, with log φ ∈ L¹(T), we write O_φ for the outer function with modulus φ. That is,

$$\mathcal{O}_{arphi}(z) := \exp\left\{rac{1}{2\pi}\int_{\mathbb{T}}rac{\zeta+z}{\zeta-z}\logarphi(\zeta)\left|d\zeta
ight|
ight\}, \qquad z\in\mathbb{D}.$$

• **Proof.** (i) \implies (ii). If (ii) fails, then $\log(1 - |f|) \in L^1$ and we put $g := \mathcal{O}_{1-|f|}$.

A piece of notation: given a function φ ≥ 0 on T, with log φ ∈ L¹(T), we write O_φ for the outer function with modulus φ. That is,

$$\mathcal{O}_{arphi}(z) := \exp\left\{rac{1}{2\pi}\int_{\mathbb{T}}rac{\zeta+z}{\zeta-z}\logarphi(\zeta)\left|d\zeta
ight|
ight\}, \qquad z\in\mathbb{D}.$$

- **Proof.** (i) \Longrightarrow (ii). If (ii) fails, then $\log(1 |f|) \in L^1$ and we put $g := \mathcal{O}_{1-|f|}$.
- Then $g \in H^\infty$ and |g| = 1 |f| on \mathbb{T} , so $\|f \pm g\|_\infty \leq 1$; and since

$$f = \frac{1}{2}(f+g) + \frac{1}{2}(f-g),$$

we see that f is non-extreme.

• (ii) \implies (i). Suppose that $||f \pm g||_{\infty} \le 1$ for some $g \in H^{\infty}$. Assuming (ii), we want to show that $g \equiv 0$.

- (ii) ⇒ (i). Suppose that ||f ± g||_∞ ≤ 1 for some g ∈ H[∞]. Assuming (ii), we want to show that g ≡ 0.
- We have

$$2|f|^2 + 2|g|^2 = |f + g|^2 + |f - g|^2 \le 2,$$

whence $|g|^2 \leq 1 - |f|^2$ on \mathbb{T} .

(ii) ⇒ (i). Suppose that ||f ± g||_∞ ≤ 1 for some g ∈ H[∞]. Assuming (ii), we want to show that g ≡ 0.

We have

$$2|f|^2 + 2|g|^2 = |f + g|^2 + |f - g|^2 \le 2$$

whence $|g|^2 \leq 1 - |f|^2$ on \mathbb{T} .

Since

$$\int_{\mathbb{T}} \log(1 - |f(\zeta)|^2) \, |d\zeta| = -\infty,$$

we deduce that $\int_{\mathbb{T}} \log |g(\zeta)| |d\zeta| = -\infty$ and so $g \equiv 0$.

Remark. Let A := H[∞] ∩ C(T) be the *disk algebra*. The extreme points of ball (A) are again characterized, among the unit-norm functions f ∈ A, by condition (ii).

- Remark. Let A := H[∞] ∩ C(T) be the *disk algebra*. The extreme points of ball (A) are again characterized, among the unit-norm functions f ∈ A, by condition (ii).
- The exposed points of $ball(H^{\infty})$ have also been described.

Theorem (Amar & Lederer, 1971)

Suppose $f \in H^{\infty}$ and $||f||_{\infty} = 1$. Then f is an exposed point of ball (H^{∞}) if and only if the set $\{\zeta \in \mathbb{T} : |f(\zeta)| = 1\}$ has positive measure.

- Remark. Let A := H[∞] ∩ C(T) be the disk algebra. The extreme points of ball (A) are again characterized, among the unit-norm functions f ∈ A, by condition (ii).
- The exposed points of $ball(H^{\infty})$ have also been described.

Theorem (Amar & Lederer, 1971)

Suppose $f \in H^{\infty}$ and $||f||_{\infty} = 1$. Then f is an exposed point of ball (H^{∞}) if and only if the set $\{\zeta \in \mathbb{T} : |f(\zeta)| = 1\}$ has positive measure.

• The proof makes use of maximal ideals, etc.

- Remark. Let A := H[∞] ∩ C(T) be the disk algebra. The extreme points of ball (A) are again characterized, among the unit-norm functions f ∈ A, by condition (ii).
- The exposed points of $ball(H^{\infty})$ have also been described.

Theorem (Amar & Lederer, 1971)

Suppose $f \in H^{\infty}$ and $||f||_{\infty} = 1$. Then f is an exposed point of ball (H^{∞}) if and only if the set $\{\zeta \in \mathbb{T} : |f(\zeta)| = 1\}$ has positive measure.

- The proof makes use of maximal ideals, etc.
- The exposed points of ball (A) are characterized by the same condition (Phelps, 1965).

Given a set Λ ⊂ Z₊ and a function f ∈ H[∞], we write f ∈ H[∞](Λ) to mean that f
 (k) = 0 for all k ∉ Λ.

- Given a set Λ ⊂ Z₊ and a function f ∈ H[∞], we write f ∈ H[∞](Λ) to mean that f
 (k) = 0 for all k ∉ Λ.
- In other words,

$$H^{\infty}(\Lambda) := \{ f \in H^{\infty} : \operatorname{spec} f \subset \Lambda \}.$$

- Given a set Λ ⊂ Z₊ and a function f ∈ H[∞], we write f ∈ H[∞](Λ) to mean that f
 (k) = 0 for all k ∉ Λ.
- In other words,

$$H^{\infty}(\Lambda) := \{ f \in H^{\infty} : \operatorname{spec} f \subset \Lambda \}.$$

• The situation is especially simple if $\mathbb{Z}_+ \setminus \Lambda$ is a finite set.

Theorem

Let Λ be a subset of \mathbb{Z}_+ with $\#(\mathbb{Z}_+ \setminus \Lambda) < \infty$. Suppose also that $f \in H^{\infty}(\Lambda)$ and $\|f\|_{\infty} = 1$. TFAE:

(i) f is an extreme point of $ball(H^{\infty}(\Lambda))$.

(ii)
$$\int_{\mathbb{T}} \log(1 - |f(\zeta)|) |d\zeta| = -\infty.$$

• **Remark.** This is in stark contrast to the situation with H^1 , where even a single spectral hole makes things different.

- **Remark.** This is in stark contrast to the situation with H^1 , where even a single spectral hole makes things different.
- Proof. (ii) ⇒ (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball (H[∞]) and hence, a fortiori, in the smaller set ball(H[∞](Λ)).

- **Remark.** This is in stark contrast to the situation with H^1 , where even a single spectral hole makes things different.
- Proof. (ii) ⇒ (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball (H[∞]) and hence, a fortiori, in the smaller set ball(H[∞](Λ)).
- (i) \Longrightarrow (ii). Assuming that (ii) fails, put $g := \mathcal{O}_{1-|f|}$. Thus, $g \in H^{\infty}$ and |g| = 1 |f| on \mathbb{T} .

- **Remark.** This is in stark contrast to the situation with H^1 , where even a single spectral hole makes things different.
- Proof. (ii) ⇒ (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball (H[∞]) and hence, a fortiori, in the smaller set ball(H[∞](Λ)).
- (i) \Longrightarrow (ii). Assuming that (ii) fails, put $g := \mathcal{O}_{1-|f|}$. Thus, $g \in H^{\infty}$ and |g| = 1 |f| on \mathbb{T} .
- Now let

$$m := \#(\mathbb{Z}_+ \setminus \Lambda)$$

and write \mathcal{P}_m for the set of polynomials of degree at most m.

• We claim that there exists $p_0 \in \mathcal{P}_m$, $p_0 \not\equiv 0$, such that $gp_0 \in H^{\infty}(\Lambda)$.

- We claim that there exists $p_0 \in \mathcal{P}_m$, $p_0 \not\equiv 0$, such that $gp_0 \in H^{\infty}(\Lambda)$.
- To see why, write

$$\mathbb{Z}_+ \setminus \Lambda = \{k_1, \ldots, k_m\},\$$

where k_1, \ldots, k_m are pairwise distinct integers.

- We claim that there exists $p_0 \in \mathcal{P}_m$, $p_0 \not\equiv 0$, such that $gp_0 \in H^{\infty}(\Lambda)$.
- To see why, write

$$\mathbb{Z}_+ \setminus \Lambda = \{k_1, \ldots, k_m\},\$$

where k_1, \ldots, k_m are pairwise distinct integers.

• Consider the linear operator $T: \mathcal{P}_m \to \mathbb{C}^m$ defined by

$$Tp := \left(\widehat{(gp)}(k_1), \ldots, \widehat{(gp)}(k_m)\right), \qquad p \in \mathcal{P}_m.$$

- We claim that there exists $p_0 \in \mathcal{P}_m$, $p_0
 ot\equiv 0$, such that $gp_0 \in H^\infty(\Lambda)$.
- To see why, write

$$\mathbb{Z}_+\setminus \Lambda=\{k_1,\ldots,k_m\},$$

where k_1, \ldots, k_m are pairwise distinct integers.

• Consider the linear operator $T: \mathcal{P}_m \to \mathbb{C}^m$ defined by

$$Tp := \left(\widehat{(gp)}(k_1), \ldots, \widehat{(gp)}(k_m)\right), \qquad p \in \mathcal{P}_m.$$

• Because $\dim \mathcal{P}_m = m + 1$, while the rank of T does not exceed m, the rank-nullity theorem tells us that Ker T has dimension at least 1 and is therefore nontrivial.

• Thus, we can find a polynomial $p_0 \in \text{Ker } T$ with $0 < \|p_0\|_{\infty} \le 1$.

Thus, we can find a polynomial p₀ ∈ Ker T with 0 < ||p₀||_∞ ≤ 1.
We have then

$$\widehat{(gp_0)}(k_1) = \cdots = \widehat{(gp_0)}(k_m) = 0,$$

so gp_0 is a nontrivial function in $H^{\infty}(\Lambda)$.

Thus, we can find a polynomial p₀ ∈ Ker T with 0 < ||p₀||_∞ ≤ 1.
We have then

$$\widehat{(gp_0)}(k_1) = \cdots = \widehat{(gp_0)}(k_m) = 0,$$

so gp_0 is a nontrivial function in $H^{\infty}(\Lambda)$.

Also,

$$|f \pm gp_0| \le |f| + |g||p_0| \le |f| + |g| = 1,$$

whence $f \pm gp_0 \in \text{ball}(H^{\infty}(\Lambda))$.

Thus, we can find a polynomial p₀ ∈ Ker T with 0 < ||p₀||_∞ ≤ 1.
We have then

$$\widehat{(gp_0)}(k_1) = \cdots = \widehat{(gp_0)}(k_m) = 0,$$

so gp_0 is a nontrivial function in $H^{\infty}(\Lambda)$.

Also,

$$|f \pm gp_0| \le |f| + |g||p_0| \le |f| + |g| = 1,$$

whence $f \pm gp_0 \in \text{ball}(H^{\infty}(\Lambda))$.

The identity

$$f = rac{1}{2}(f + gp_0) + rac{1}{2}(f - gp_0)$$

now shows that f is non-extreme in $\operatorname{ball}(H^{\infty}(\Lambda))$.

• A similar result holds for $\mathcal{A}(\Lambda) := H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_+$ with $\#(\mathbb{Z}_+ \setminus \Lambda) < \infty$, the extreme points of ball($\mathcal{A}(\Lambda)$) are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii). • A similar result holds for $\mathcal{A}(\Lambda) := H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_+$ with $\#(\mathbb{Z}_+ \setminus \Lambda) < \infty$, the extreme points of ball($\mathcal{A}(\Lambda)$) are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii).

Question. For which sets Λ ⊂ Z₊ is it true that the extreme points f of ball(H[∞](Λ)) are still characterized by

$$\int_{\mathbb{T}} \log(1 - |f(\zeta)|) \, |d\zeta| = -\infty$$
 ?

• A similar result holds for $\mathcal{A}(\Lambda) := H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_+$ with $\#(\mathbb{Z}_+ \setminus \Lambda) < \infty$, the extreme points of $\operatorname{ball}(\mathcal{A}(\Lambda))$ are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii).

Question. For which sets Λ ⊂ Z₊ is it true that the extreme points f of ball(H[∞](Λ)) are still characterized by

$$\int_{\mathbb{T}} \log(1 - |f(\zeta)|) \, |d\zeta| = -\infty \, ?$$

• Such $\Lambda `s$ should be suitably thick in $\mathbb{Z}_+,$ but $\mathbb{Z}_+\setminus\Lambda$ need not be finite.

• Now suppose that $\Lambda \subset \mathbb{Z}_+$ and $\#\Lambda < \infty$.

- Now suppose that $\Lambda \subset \mathbb{Z}_+$ and $\#\Lambda < \infty$.
- We shall write P(Λ), or occasionally P[∞](Λ) (rather than H[∞](Λ)), for the space of *lacunary polynomials* of the form

$$p(z) = \sum_{k \in \Lambda} \widehat{p}(k) z^k$$

that arises.

- Now suppose that $\Lambda \subset \mathbb{Z}_+$ and $\#\Lambda < \infty$.
- We shall write P(Λ), or occasionally P[∞](Λ) (rather than H[∞](Λ)), for the space of *lacunary polynomials* of the form

$$p(z) = \sum_{k \in \Lambda} \widehat{p}(k) z^k$$

that arises.

• As obvious examples of extreme points of $\operatorname{ball}(\mathcal{P}^{\infty}(\Lambda))$ we mention the monomials $z \mapsto cz^k$, with $k \in \Lambda$ and c a unimodular constant.

• We may assume that

$$\Lambda = \{0, 1, \ldots, N\} \setminus \{k_1, \ldots, k_M\}$$

for some positive integers N and k_j (j = 1, ..., M) with

$$k_1 < k_2 < \cdots < k_M < N.$$

We may assume that

$$\Lambda = \{0, 1, \ldots, N\} \setminus \{k_1, \ldots, k_M\}$$

for some positive integers N and k_j (j = 1, ..., M) with

$$k_1 < k_2 < \cdots < k_M < N.$$

 When M = 0, the corresponding P(Λ) space reduces to P_N (the non-lacunary case).

• Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty} = 1.$

- Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty} = 1$.
- Our criterion for p to be extreme in ball(P[∞](Λ)) will be stated in terms of a matrix M = M_Λ(p), which we now construct.

- Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty} = 1$.
- Our criterion for p to be extreme in ball(P[∞](Λ)) will be stated in terms of a matrix M = M_Λ(p), which we now construct.
- Let ζ₁,..., ζ_n be an enumeration of the (finite and nonempty) set {ζ ∈ T : |p(ζ)| = 1}. Viewed as zeros of the function

$$au(z):=1-|
ho(z)|^2,\qquad z\in\mathbb{T}$$

(or equivalently, of the polynomial $z^N \tau$), the ζ_j 's have even multiplicities, which we denote by $2\mu_1, \ldots, 2\mu_n$ respectively.

• The μ_j 's are therefore positive integers. We then put

$$\mu := \sum_{j=1}^{n} \mu_j$$
 and $\gamma := \mu/2.$

Since $z^N \tau \in \mathcal{P}_{2N}$, it follows that $\mu \leq N$.

• The μ_j 's are therefore positive integers. We then put

$$\mu := \sum_{j=1}^{n} \mu_j$$
 and $\gamma := \mu/2$.

Since $z^N \tau \in \mathcal{P}_{2N}$, it follows that $\mu \leq N$.

• For each $j \in \{1, \dots, n\}$, we consider the Wronski-type matrix

$$W_{j} := \begin{pmatrix} \overline{\zeta}_{j}^{\gamma} p(\zeta_{j}) & \overline{\zeta}_{j}^{\gamma+1} p(\zeta_{j}) & \dots & \overline{\zeta}_{j}^{N-\gamma} p(\zeta_{j}) \\ (\overline{z}^{\gamma} p)'(\zeta_{j}) & (\overline{z}^{\gamma+1} p)'(\zeta_{j}) & \dots & (\overline{z}^{N-\gamma} p)'(\zeta_{j}) \\ \vdots & \vdots & \vdots & \vdots \\ (\overline{z}^{\gamma} p)^{(\mu_{j}-1)}(\zeta_{j}) & (\overline{z}^{\gamma+1} p)^{(\mu_{j}-1)}(\zeta_{j}) & \dots & (\overline{z}^{N-\gamma} p)^{(\mu_{j}-1)}(\zeta_{j}) \end{pmatrix}$$

 This W_j has μ_j rows and N - μ + 1 columns. The derivatives are taken with respect to the real parameter t = arg z.

- This W_j has μ_j rows and N μ + 1 columns. The derivatives are taken with respect to the real parameter t = arg z.
- We also need the real matrices

$$\mathcal{U}_j := \operatorname{Re} W_j$$
 and $\mathcal{V}_j := \operatorname{Im} W_j$ $(j = 1, \dots n)$.

- This W_j has μ_j rows and N μ + 1 columns. The derivatives are taken with respect to the real parameter t = arg z.
- We also need the real matrices

$$\mathcal{U}_j := \operatorname{Re} W_j$$
 and $\mathcal{V}_j := \operatorname{Im} W_j$ $(j = 1, \dots n)$.

The rest of the construction involves the polynomial

$$r(z) := \prod_{j=1}^n (z-\zeta_j)^{\mu_j}$$

and its coefficients $\hat{r}(k)$ with $k \in \mathbb{Z}$.

- This W_j has μ_j rows and N μ + 1 columns. The derivatives are taken with respect to the real parameter t = arg z.
- We also need the real matrices

$$\mathcal{U}_j := \operatorname{Re} W_j$$
 and $\mathcal{V}_j := \operatorname{Im} W_j$ $(j = 1, \dots n)$.

The rest of the construction involves the polynomial

$$r(z) := \prod_{j=1}^n (z-\zeta_j)^{\mu_j}$$

and its coefficients $\hat{r}(k)$ with $k \in \mathbb{Z}$.

• (For k < 0 and $k > \mu$, we obviously have $\hat{r}(k) = 0$.)

• From these, some further matrices will be built.

- From these, some further matrices will be built.
- Namely, we introduce the $M imes (N-\mu+1)$ matrix

$$\mathcal{R} := egin{pmatrix} \widehat{r}(k_1) & \widehat{r}(k_1-1) & \dots & \widehat{r}(k_1-N+\mu) \ dots & dots & dots & dots \ \widehat{r}(k_M) & \widehat{r}(k_M-1) & \dots & \widehat{r}(k_M-N+\mu) \end{pmatrix}.$$

along with the real matrices

$$\mathcal{A} := \operatorname{Re} \mathcal{R} \quad \text{and} \quad \mathcal{B} := \operatorname{Im} \mathcal{R}.$$

• Finally, we define the block matrix

$$\mathcal{M} = \mathcal{M}_{\Lambda}(p) := egin{pmatrix} \mathcal{A} & -\mathcal{B} \ \mathcal{B} & \mathcal{A} \ \mathcal{U}_1 & \mathcal{V}_1 \ dots & dots \ \mathcal{U}_n & \mathcal{V}_n \end{pmatrix},$$

which has $2M + \mu$ rows and $2(N - \mu + 1)$ columns.

Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_+$ as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of ball($\mathcal{P}^{\infty}(\Lambda)$) if and only if rank $\mathcal{M}_{\Lambda}(p) = 2(N - \mu + 1)$.

Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_+$ as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of $\operatorname{ball}(\mathcal{P}^{\infty}(\Lambda))$ if and only if $\operatorname{rank} \mathcal{M}_{\Lambda}(p) = 2(N - \mu + 1)$.

• **Remark.** Even when $\Lambda = \{0, 1, 2\}$, the rank condition is unlikely to admit a considerable simplification. Indeed, we can find unit-norm polynomials p_1 , p_2 in \mathcal{P}_2 satisfying

$$1-|p_1(z)|^2=2\left(1-|p_2(z)|^2
ight), \qquad z\in\mathbb{T},$$

and such that p_1 is non-extreme for $ball(\mathcal{P}_2)$, while p_2 is extreme.

Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_+$ as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of $\operatorname{ball}(\mathcal{P}^{\infty}(\Lambda))$ if and only if $\operatorname{rank} \mathcal{M}_{\Lambda}(p) = 2(N - \mu + 1)$.

• **Remark.** Even when $\Lambda = \{0, 1, 2\}$, the rank condition is unlikely to admit a considerable simplification. Indeed, we can find unit-norm polynomials p_1 , p_2 in \mathcal{P}_2 satisfying

$$1-|p_1(z)|^2=2\left(1-|p_2(z)|^2
ight), \qquad z\in\mathbb{T},$$

and such that p_1 is non-extreme for $ball(\mathcal{P}_2)$, while p_2 is extreme.

• E.g., take $p_1(z) = \frac{1}{2}(z^2 + 1)$ and $p_2(z) = \frac{1}{2\sqrt{2}}(z^2 + 2iz + 1)$.

• (1) What happens in higher dimensions (say, on \mathbb{T}^d in place of \mathbb{T})?

- (1) What happens in higher dimensions (say, on \mathbb{T}^d in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?

- (1) What happens in higher dimensions (say, on \mathbb{T}^d in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H^1_{Λ} and H^{∞}_{Λ} when neither Λ nor $\mathbb{Z}_+ \setminus \Lambda$ is finite?

- (1) What happens in higher dimensions (say, on \mathbb{T}^d in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H^1_{Λ} and H^{∞}_{Λ} when neither Λ nor $\mathbb{Z}_+ \setminus \Lambda$ is finite?
- (4) What happens between H^1 and L^1 ? More precisely, for which sets $E \subset \mathbb{Z}_-$ does the unit ball of

$$\{f \in L^1 : \operatorname{spec} f \subset (\mathbb{Z}_+ \cup E)\}$$

have extreme points?

- (1) What happens in higher dimensions (say, on \mathbb{T}^d in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H^1_{Λ} and H^{∞}_{Λ} when neither Λ nor $\mathbb{Z}_+ \setminus \Lambda$ is finite?
- (4) What happens between H^1 and L^1 ? More precisely, for which sets $E \subset \mathbb{Z}_-$ does the unit ball of

$$\{f \in L^1 : \operatorname{spec} f \subset (\mathbb{Z}_+ \cup E)\}$$

have extreme points?

• (5) What are the extreme points in the model space K_{θ}^{∞} ?

$\sim \sim \sim~$ Snip, snap, snout, this tale's told out. $~\sim \sim \sim~$

$\sim \sim \sim$ Snip, snap, snout, this tale's told out. $\sim \sim \sim$

******** The End ********

$\sim \sim \sim$ Snip, snap, snout, this tale's told out. $\sim \sim \sim$

******** The End ********

$\sim \sim \sim$ THANK YOU! $\sim \sim \sim$

K. M. Dyakonov (ICREA & UB)

Geometry of the unit ball