GEOMETRY OF THE UNIT BALL IN VARIOUS HOLOMORPHIC SPACES Lecture 3

Konstantin Dyakonov
ICREA \& Universitat de Barcelona

St. Petersburg
December 2, 2021

H^{∞} and its subspaces

- This time, let us look at

$$
\operatorname{ball}(X):=\left\{f \in X:\|f\|_{\infty} \leq 1\right\}
$$

for certain subspaces X of H^{∞}.

- This time, let us look at

$$
\operatorname{ball}(X):=\left\{f \in X:\|f\|_{\infty} \leq 1\right\}
$$

for certain subspaces X of H^{∞}.

- Since $H^{\infty} \subset L^{\infty}=L^{\infty}(\mathbb{T})$, we begin by recalling that the extreme (and exposed) points of ball $\left(L^{\infty}\right)$ are precisely the unimodular functions.

H^{∞} and its subspaces

- This time, let us look at

$$
\operatorname{ball}(X):=\left\{f \in X:\|f\|_{\infty} \leq 1\right\}
$$

for certain subspaces X of H^{∞}.

- Since $H^{\infty} \subset L^{\infty}=L^{\infty}(\mathbb{T})$, we begin by recalling that the extreme (and exposed) points of ball (L^{∞}) are precisely the unimodular functions.
- As to ball $\left(H^{\infty}\right)$, we have the following classical result.

Theorem

Let $f \in H^{\infty}$ and $\|f\|_{\infty}=1$. TFAE:
(i) f is an extreme point of ball $\left(H^{\infty}\right)$.
(ii) $\int_{\mathbb{T}} \log (1-|f(\zeta)|)|d \zeta|=-\infty$.

H^{∞} and its subspaces

- A piece of notation: given a function $\varphi \geq 0$ on \mathbb{T}, with $\log \varphi \in L^{1}(\mathbb{T})$, we write \mathcal{O}_{φ} for the outer function with modulus φ. That is,

$$
\mathcal{O}_{\varphi}(z):=\exp \left\{\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \varphi(\zeta)|d \zeta|\right\}, \quad z \in \mathbb{D}
$$

- A piece of notation: given a function $\varphi \geq 0$ on \mathbb{T}, with $\log \varphi \in L^{1}(\mathbb{T})$, we write \mathcal{O}_{φ} for the outer function with modulus φ. That is,

$$
\mathcal{O}_{\varphi}(z):=\exp \left\{\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \varphi(\zeta)|d \zeta|\right\}, \quad z \in \mathbb{D}
$$

- Proof. (i) \Longrightarrow (ii). If (ii) fails, then $\log (1-|f|) \in L^{1}$ and we put $g:=\mathcal{O}_{1-|f|}$.

H^{∞} and its subspaces

- A piece of notation: given a function $\varphi \geq 0$ on \mathbb{T}, with $\log \varphi \in L^{1}(\mathbb{T})$, we write \mathcal{O}_{φ} for the outer function with modulus φ. That is,

$$
\mathcal{O}_{\varphi}(z):=\exp \left\{\frac{1}{2 \pi} \int_{\mathbb{T}} \frac{\zeta+z}{\zeta-z} \log \varphi(\zeta)|d \zeta|\right\}, \quad z \in \mathbb{D}
$$

- Proof. (i) \Longrightarrow (ii). If (ii) fails, then $\log (1-|f|) \in L^{1}$ and we put $g:=\mathcal{O}_{1-|f|}$.
- Then $g \in H^{\infty}$ and $|g|=1-|f|$ on \mathbb{T}, so $\|f \pm g\|_{\infty} \leq 1$; and since

$$
f=\frac{1}{2}(f+g)+\frac{1}{2}(f-g)
$$

we see that f is non-extreme.

H^{∞} and its subspaces

- (ii) \Longrightarrow (i). Suppose that $\|f \pm g\|_{\infty} \leq 1$ for some $g \in H^{\infty}$. Assuming (ii), we want to show that $g \equiv 0$.

H^{∞} and its subspaces

- (ii) \Longrightarrow (i). Suppose that $\|f \pm g\|_{\infty} \leq 1$ for some $g \in H^{\infty}$. Assuming (ii), we want to show that $g \equiv 0$.
- We have

$$
2|f|^{2}+2|g|^{2}=|f+g|^{2}+|f-g|^{2} \leq 2
$$

whence $|g|^{2} \leq 1-|f|^{2}$ on \mathbb{T}.

- (ii) \Longrightarrow (i). Suppose that $\|f \pm g\|_{\infty} \leq 1$ for some $g \in H^{\infty}$. Assuming (ii), we want to show that $g \equiv 0$.
- We have

$$
2|f|^{2}+2|g|^{2}=|f+g|^{2}+|f-g|^{2} \leq 2
$$

whence $|g|^{2} \leq 1-|f|^{2}$ on \mathbb{T}.

- Since

$$
\int_{\mathbb{T}} \log \left(1-|f(\zeta)|^{2}\right)|d \zeta|=-\infty
$$

we deduce that $\int_{\mathbb{T}} \log |g(\zeta)||d \zeta|=-\infty$ and so $g \equiv 0$.

- Remark. Let $\mathcal{A}:=H^{\infty} \cap C(\mathbb{T})$ be the disk algebra. The extreme points of ball (\mathcal{A}) are again characterized, among the unit-norm functions $f \in \mathcal{A}$, by condition (ii).
- Remark. Let $\mathcal{A}:=H^{\infty} \cap C(\mathbb{T})$ be the disk algebra. The extreme points of ball (\mathcal{A}) are again characterized, among the unit-norm functions $f \in \mathcal{A}$, by condition (ii).
- The exposed points of ball $\left(H^{\infty}\right)$ have also been described.

Theorem (Amar \& Lederer, 1971)

Suppose $f \in H^{\infty}$ and $\|f\|_{\infty}=1$. Then f is an exposed point of ball $\left(H^{\infty}\right)$ if and only if the set $\{\zeta \in \mathbb{T}:|f(\zeta)|=1\}$ has positive measure.

- Remark. Let $\mathcal{A}:=H^{\infty} \cap C(\mathbb{T})$ be the disk algebra. The extreme points of ball (\mathcal{A}) are again characterized, among the unit-norm functions $f \in \mathcal{A}$, by condition (ii).
- The exposed points of ball $\left(H^{\infty}\right)$ have also been described.

Theorem (Amar \& Lederer, 1971)

Suppose $f \in H^{\infty}$ and $\|f\|_{\infty}=1$. Then f is an exposed point of ball $\left(H^{\infty}\right)$ if and only if the set $\{\zeta \in \mathbb{T}:|f(\zeta)|=1\}$ has positive measure.

- The proof makes use of maximal ideals, etc.
- Remark. Let $\mathcal{A}:=H^{\infty} \cap C(\mathbb{T})$ be the disk algebra. The extreme points of ball (\mathcal{A}) are again characterized, among the unit-norm functions $f \in \mathcal{A}$, by condition (ii).
- The exposed points of ball $\left(H^{\infty}\right)$ have also been described.

Theorem (Amar \& Lederer, 1971)

Suppose $f \in H^{\infty}$ and $\|f\|_{\infty}=1$. Then f is an exposed point of ball $\left(H^{\infty}\right)$ if and only if the set $\{\zeta \in \mathbb{T}:|f(\zeta)|=1\}$ has positive measure.

- The proof makes use of maximal ideals, etc.
- The exposed points of ball (\mathcal{A}) are characterized by the same condition (Phelps, 1965).

Functions with large spectra

- Given a set $\Lambda \subset \mathbb{Z}_{+}$and a function $f \in H^{\infty}$, we write $f \in H^{\infty}(\Lambda)$ to mean that $\widehat{f}(k)=0$ for all $k \notin \Lambda$.

Functions with large spectra

- Given a set $\Lambda \subset \mathbb{Z}_{+}$and a function $f \in H^{\infty}$, we write $f \in H^{\infty}(\Lambda)$ to mean that $\widehat{f}(k)=0$ for all $k \notin \Lambda$.
- In other words,

$$
H^{\infty}(\Lambda):=\left\{f \in H^{\infty}: \operatorname{spec} f \subset \Lambda\right\}
$$

Functions with large spectra

- Given a set $\Lambda \subset \mathbb{Z}_{+}$and a function $f \in H^{\infty}$, we write $f \in H^{\infty}(\Lambda)$ to mean that $\widehat{f}(k)=0$ for all $k \notin \Lambda$.
- In other words,

$$
H^{\infty}(\Lambda):=\left\{f \in H^{\infty}: \operatorname{spec} f \subset \Lambda\right\} .
$$

- The situation is especially simple if $\mathbb{Z}_{+} \backslash \Lambda$ is a finite set.

Theorem

Let Λ be a subset of \mathbb{Z}_{+}with $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$. Suppose also that $f \in H^{\infty}(\Lambda)$ and $\|f\|_{\infty}=1$. TFAE:
(i) f is an extreme point of $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.
(ii) $\int_{\mathbb{T}} \log (1-|f(\zeta)|)|d \zeta|=-\infty$.

Functions with large spectra

- Remark. This is in stark contrast to the situation with H^{1}, where even a single spectral hole makes things different.

Functions with large spectra

- Remark. This is in stark contrast to the situation with H^{1}, where even a single spectral hole makes things different.
- Proof. (ii) \Longrightarrow (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball $\left(H^{\infty}\right)$ and hence, a fortiori, in the smaller set $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.

Functions with large spectra

- Remark. This is in stark contrast to the situation with H^{1}, where even a single spectral hole makes things different.
- Proof. (ii) \Longrightarrow (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball $\left(H^{\infty}\right)$ and hence, a fortiori, in the smaller set $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.
- (i) \Longrightarrow (ii). Assuming that (ii) fails, put $g:=\mathcal{O}_{1-|f|}$. Thus, $g \in H^{\infty}$ and $|g|=1-|f|$ on \mathbb{T}.

Functions with large spectra

- Remark. This is in stark contrast to the situation with H^{1}, where even a single spectral hole makes things different.
- Proof. (ii) \Longrightarrow (i). This is obvious. Indeed, under condition (ii), f is even extreme in ball $\left(H^{\infty}\right)$ and hence, a fortiori, in the smaller set $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.
- (i) \Longrightarrow (ii). Assuming that (ii) fails, put $g:=\mathcal{O}_{1-|f|}$. Thus, $g \in H^{\infty}$ and $|g|=1-|f|$ on \mathbb{T}.
- Now let

$$
m:=\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)
$$

and write \mathcal{P}_{m} for the set of polynomials of degree at most m.

Functions with large spectra

- We claim that there exists $p_{0} \in \mathcal{P}_{m}, p_{0} \not \equiv 0$, such that $g p_{0} \in H^{\infty}(\Lambda)$.

Functions with large spectra

- We claim that there exists $p_{0} \in \mathcal{P}_{m}, p_{0} \not \equiv 0$, such that $g p_{0} \in H^{\infty}(\Lambda)$.
- To see why, write

$$
\mathbb{Z}_{+} \backslash \Lambda=\left\{k_{1}, \ldots, k_{m}\right\}
$$

where k_{1}, \ldots, k_{m} are pairwise distinct integers.

Functions with large spectra

- We claim that there exists $p_{0} \in \mathcal{P}_{m}, p_{0} \not \equiv 0$, such that $g p_{0} \in H^{\infty}(\Lambda)$.
- To see why, write

$$
\mathbb{Z}_{+} \backslash \Lambda=\left\{k_{1}, \ldots, k_{m}\right\}
$$

where k_{1}, \ldots, k_{m} are pairwise distinct integers.

- Consider the linear operator $T: \mathcal{P}_{m} \rightarrow \mathbb{C}^{m}$ defined by

$$
T p:=\left(\widehat{(g p)}\left(k_{1}\right), \ldots, \widehat{(g p)}\left(k_{m}\right)\right), \quad p \in \mathcal{P}_{m}
$$

Functions with large spectra

- We claim that there exists $p_{0} \in \mathcal{P}_{m}, p_{0} \not \equiv 0$, such that $g p_{0} \in H^{\infty}(\Lambda)$.
- To see why, write

$$
\mathbb{Z}_{+} \backslash \Lambda=\left\{k_{1}, \ldots, k_{m}\right\}
$$

where k_{1}, \ldots, k_{m} are pairwise distinct integers.

- Consider the linear operator $T: \mathcal{P}_{m} \rightarrow \mathbb{C}^{m}$ defined by

$$
T p:=\left(\widehat{(g p)}\left(k_{1}\right), \ldots, \widehat{(g p)}\left(k_{m}\right)\right), \quad p \in \mathcal{P}_{m}
$$

- Because $\operatorname{dim} \mathcal{P}_{m}=m+1$, while the rank of T does not exceed m, the rank-nullity theorem tells us that Ker T has dimension at least 1 and is therefore nontrivial.

Functions with large spectra

- Thus, we can find a polynomial $p_{0} \in \operatorname{Ker} T$ with $0<\left\|p_{0}\right\|_{\infty} \leq 1$.

Functions with large spectra

- Thus, we can find a polynomial $p_{0} \in \operatorname{Ker} T$ with $0<\left\|p_{0}\right\|_{\infty} \leq 1$.
- We have then

$$
\widehat{\left(g p_{0}\right)}\left(k_{1}\right)=\cdots=\widehat{\left(g p_{0}\right)}\left(k_{m}\right)=0
$$

so $g p_{0}$ is a nontrivial function in $H^{\infty}(\Lambda)$.

Functions with large spectra

- Thus, we can find a polynomial $p_{0} \in \operatorname{Ker} T$ with $0<\left\|p_{0}\right\|_{\infty} \leq 1$.
- We have then

$$
\widehat{\left(g p_{0}\right)}\left(k_{1}\right)=\cdots=\widehat{\left(g p_{0}\right)}\left(k_{m}\right)=0
$$

so $g p_{0}$ is a nontrivial function in $H^{\infty}(\Lambda)$.

- Also,

$$
\left|f \pm g p_{0}\right| \leq|f|+|g|\left|p_{0}\right| \leq|f|+|g|=1
$$

whence $f \pm g p_{0} \in \operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.

Functions with large spectra

- Thus, we can find a polynomial $p_{0} \in \operatorname{Ker} T$ with $0<\left\|p_{0}\right\|_{\infty} \leq 1$.
- We have then

$$
\widehat{\left(g p_{0}\right)}\left(k_{1}\right)=\cdots=\widehat{\left(g p_{0}\right)}\left(k_{m}\right)=0
$$

so $g p_{0}$ is a nontrivial function in $H^{\infty}(\Lambda)$.

- Also,

$$
\left|f \pm g p_{0}\right| \leq|f|+|g|\left|p_{0}\right| \leq|f|+|g|=1
$$

whence $f \pm g p_{0} \in \operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.

- The identity

$$
f=\frac{1}{2}\left(f+g p_{0}\right)+\frac{1}{2}\left(f-g p_{0}\right)
$$

now shows that f is non-extreme in $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$.

Functions with large spectra

- A similar result holds for $\mathcal{A}(\Lambda):=H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_{+}$with $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$, the extreme points of $\operatorname{ball}(\mathcal{A}(\Lambda))$ are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii).

Functions with large spectra

- A similar result holds for $\mathcal{A}(\Lambda):=H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_{+}$with $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$, the extreme points of ball $(\mathcal{A}(\Lambda))$ are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii).

- Question. For which sets $\Lambda \subset \mathbb{Z}_{+}$is it true that the extreme points f of ball $\left(H^{\infty}(\Lambda)\right)$ are still characterized by

$$
\int_{\mathbb{T}} \log (1-|f(\zeta)|)|d \zeta|=-\infty ?
$$

Functions with large spectra

- A similar result holds for $\mathcal{A}(\Lambda):=H^{\infty}(\Lambda) \cap \mathcal{A}$, where \mathcal{A} is the disk algebra:

Proposition

Given a set $\Lambda \subset \mathbb{Z}_{+}$with $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$, the extreme points of $\operatorname{ball}(\mathcal{A}(\Lambda))$ are precisely the unit-norm functions $f \in \mathcal{A}(\Lambda)$ satisfying (ii).

- Question. For which sets $\Lambda \subset \mathbb{Z}_{+}$is it true that the extreme points f of $\operatorname{ball}\left(H^{\infty}(\Lambda)\right)$ are still characterized by

$$
\int_{\mathbb{T}} \log (1-|f(\zeta)|)|d \zeta|=-\infty ?
$$

- Such Λ 's should be suitably thick in \mathbb{Z}_{+}, but $\mathbb{Z}_{+} \backslash \Lambda$ need not be finite.

Functions with small spectra

- Now suppose that $\Lambda \subset \mathbb{Z}_{+}$and $\# \Lambda<\infty$.

Functions with small spectra

- Now suppose that $\Lambda \subset \mathbb{Z}_{+}$and $\# \Lambda<\infty$.
- We shall write $\mathcal{P}(\Lambda)$, or occasionally $\mathcal{P}^{\infty}(\Lambda)$ (rather than $H^{\infty}(\Lambda)$), for the space of lacunary polynomials of the form

$$
p(z)=\sum_{k \in \Lambda} \hat{p}(k) z^{k}
$$

that arises.

Functions with small spectra

- Now suppose that $\Lambda \subset \mathbb{Z}_{+}$and $\# \Lambda<\infty$.
- We shall write $\mathcal{P}(\Lambda)$, or occasionally $\mathcal{P}^{\infty}(\Lambda)$ (rather than $H^{\infty}(\Lambda)$), for the space of lacunary polynomials of the form

$$
p(z)=\sum_{k \in \Lambda} \hat{p}(k) z^{k}
$$

that arises.

- As obvious examples of extreme points of $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ we mention the monomials $z \mapsto c z^{k}$, with $k \in \Lambda$ and c a unimodular constant.

Functions with small spectra

- We may assume that

$$
\Lambda=\{0,1, \ldots, N\} \backslash\left\{k_{1}, \ldots, k_{M}\right\}
$$

for some positive integers N and $k_{j}(j=1, \ldots, M)$ with

$$
k_{1}<k_{2}<\cdots<k_{M}<N .
$$

Functions with small spectra

- We may assume that

$$
\Lambda=\{0,1, \ldots, N\} \backslash\left\{k_{1}, \ldots, k_{M}\right\}
$$

for some positive integers N and $k_{j}(j=1, \ldots, M)$ with

$$
k_{1}<k_{2}<\cdots<k_{M}<N
$$

- When $M=0$, the corresponding $\mathcal{P}(\Lambda)$ space reduces to \mathcal{P}_{N} (the non-lacunary case).

Functions with small spectra

- Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty}=1$.

Functions with small spectra

- Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty}=1$.
- Our criterion for p to be extreme in $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ will be stated in terms of a matrix $\mathcal{M}=\mathcal{M}_{\Lambda}(p)$, which we now construct.

Functions with small spectra

- Now suppose $p \in \mathcal{P}(\Lambda)$ is a polynomial, other than a monomial, with $\|p\|_{\infty}=1$.
- Our criterion for p to be extreme in $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ will be stated in terms of a matrix $\mathcal{M}=\mathcal{M}_{\wedge}(p)$, which we now construct.
- Let $\zeta_{1}, \ldots, \zeta_{n}$ be an enumeration of the (finite and nonempty) set $\{\zeta \in \mathbb{T}:|p(\zeta)|=1\}$. Viewed as zeros of the function

$$
\tau(z):=1-|p(z)|^{2}, \quad z \in \mathbb{T}
$$

(or equivalently, of the polynomial $z^{N} \tau$), the ζ_{j} 's have even multiplicities, which we denote by $2 \mu_{1}, \ldots, 2 \mu_{n}$ respectively.

Functions with small spectra

- The μ_{j} 's are therefore positive integers. We then put

$$
\mu:=\sum_{j=1}^{n} \mu_{j} \quad \text { and } \quad \gamma:=\mu / 2
$$

Since $z^{N} \tau \in \mathcal{P}_{2 N}$, it follows that $\mu \leq N$.

Functions with small spectra

- The μ_{j} 's are therefore positive integers. We then put

$$
\mu:=\sum_{j=1}^{n} \mu_{j} \quad \text { and } \quad \gamma:=\mu / 2
$$

Since $z^{N} \tau \in \mathcal{P}_{2 N}$, it follows that $\mu \leq N$.

- For each $j \in\{1, \ldots, n\}$, we consider the Wronski-type matrix

$$
W_{j}:=\left(\begin{array}{cccc}
\bar{\zeta}_{j}^{\gamma} p\left(\zeta_{j}\right) & \bar{\zeta}_{j}^{\gamma+1} p\left(\zeta_{j}\right) & \cdots & \bar{\zeta}_{j}^{N-\gamma} p\left(\zeta_{j}\right) \\
\left(\bar{z}^{\gamma} p\right)^{\prime}\left(\zeta_{j}\right) & \left(\bar{z}^{\gamma+1} p\right)^{\prime}\left(\zeta_{j}\right) & \cdots & \left(\bar{z}^{N-\gamma} p\right)^{\prime}\left(\zeta_{j}\right) \\
\vdots & \vdots & \vdots & \vdots \\
\left(\bar{z}^{\gamma} p\right)^{\left(\mu_{j}-1\right)}\left(\zeta_{j}\right) & \left(\bar{z}^{\gamma+1} p\right)^{\left(\mu_{j}-1\right)}\left(\zeta_{j}\right) & \cdots & \left(\bar{z}^{N-\gamma} p\right)^{\left(\mu_{j}-1\right)}\left(\zeta_{j}\right)
\end{array}\right)
$$

Functions with small spectra

- This W_{j} has μ_{j} rows and $N-\mu+1$ columns. The derivatives are taken with respect to the real parameter $t=\arg z$.

Functions with small spectra

- This W_{j} has μ_{j} rows and $N-\mu+1$ columns. The derivatives are taken with respect to the real parameter $t=\arg z$.
- We also need the real matrices

$$
\mathcal{U}_{j}:=\operatorname{Re} W_{j} \quad \text { and } \quad \mathcal{V}_{j}:=\operatorname{Im} W_{j} \quad(j=1, \ldots n)
$$

Functions with small spectra

- This W_{j} has μ_{j} rows and $N-\mu+1$ columns. The derivatives are taken with respect to the real parameter $t=\arg z$.
- We also need the real matrices

$$
\mathcal{U}_{j}:=\operatorname{Re} W_{j} \quad \text { and } \quad \mathcal{V}_{j}:=\operatorname{Im} W_{j} \quad(j=1, \ldots n)
$$

- The rest of the construction involves the polynomial

$$
r(z):=\prod_{j=1}^{n}\left(z-\zeta_{j}\right)^{\mu_{j}}
$$

and its coefficients $\widehat{r}(k)$ with $k \in \mathbb{Z}$.

Functions with small spectra

- This W_{j} has μ_{j} rows and $N-\mu+1$ columns. The derivatives are taken with respect to the real parameter $t=\arg z$.
- We also need the real matrices

$$
\mathcal{U}_{j}:=\operatorname{Re} W_{j} \quad \text { and } \quad \mathcal{V}_{j}:=\operatorname{Im} W_{j} \quad(j=1, \ldots n)
$$

- The rest of the construction involves the polynomial

$$
r(z):=\prod_{j=1}^{n}\left(z-\zeta_{j}\right)^{\mu_{j}}
$$

and its coefficients $\widehat{r}(k)$ with $k \in \mathbb{Z}$.

- (For $k<0$ and $k>\mu$, we obviously have $\widehat{r}(k)=0$.)

Functions with small spectra

- From these, some further matrices will be built.

Functions with small spectra

- From these, some further matrices will be built.
- Namely, we introduce the $M \times(N-\mu+1)$ matrix

$$
\mathcal{R}:=\left(\begin{array}{cccc}
\widehat{r}\left(k_{1}\right) & \widehat{r}\left(k_{1}-1\right) & \ldots & \widehat{r}\left(k_{1}-N+\mu\right) \\
\vdots & \vdots & \vdots & \vdots \\
\widehat{r}\left(k_{M}\right) & \widehat{r}\left(k_{M}-1\right) & \ldots & \widehat{r}\left(k_{M}-N+\mu\right)
\end{array}\right) .
$$

along with the real matrices

$$
\mathcal{A}:=\operatorname{Re} \mathcal{R} \quad \text { and } \quad \mathcal{B}:=\operatorname{Im} \mathcal{R}
$$

Functions with small spectra

- Finally, we define the block matrix

$$
\mathcal{M}=\mathcal{M}_{\wedge}(p):=\left(\begin{array}{cc}
\mathcal{A} & -\mathcal{B} \\
\mathcal{B} & \mathcal{A} \\
\mathcal{U}_{1} & \mathcal{V}_{1} \\
\vdots & \vdots \\
\mathcal{U}_{n} & \mathcal{V}_{n}
\end{array}\right)
$$

which has $2 M+\mu$ rows and $2(N-\mu+1)$ columns.

Functions with small spectra

- Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_{+}$as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ if and only if $\operatorname{rank} \mathcal{M}_{\Lambda}(p)=2(N-\mu+1)$.

Functions with small spectra

- Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_{+}$as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ if and only if $\operatorname{rank} \mathcal{M}_{\Lambda}(p)=2(N-\mu+1)$.

- Remark. Even when $\Lambda=\{0,1,2\}$, the rank condition is unlikely to admit a considerable simplification. Indeed, we can find unit-norm polynomials p_{1}, p_{2} in \mathcal{P}_{2} satisfying

$$
1-\left|p_{1}(z)\right|^{2}=2\left(1-\left|p_{2}(z)\right|^{2}\right), \quad z \in \mathbb{T}
$$

and such that p_{1} is non-extreme for $\operatorname{ball}\left(\mathcal{P}_{2}\right)$, while p_{2} is extreme.

Functions with small spectra

- Now, the result is:

Theorem

Given a finite set $\Lambda \subset \mathbb{Z}_{+}$as above, suppose that p is a unit-norm polynomial in $\mathcal{P}^{\infty}(\Lambda)$ distinct from a monomial. Then p is an extreme point of $\operatorname{ball}\left(\mathcal{P}^{\infty}(\Lambda)\right)$ if and only if $\operatorname{rank} \mathcal{M}_{\Lambda}(p)=2(N-\mu+1)$.

- Remark. Even when $\Lambda=\{0,1,2\}$, the rank condition is unlikely to admit a considerable simplification. Indeed, we can find unit-norm polynomials p_{1}, p_{2} in \mathcal{P}_{2} satisfying

$$
1-\left|p_{1}(z)\right|^{2}=2\left(1-\left|p_{2}(z)\right|^{2}\right), \quad z \in \mathbb{T}
$$

and such that p_{1} is non-extreme for $\operatorname{ball}\left(\mathcal{P}_{2}\right)$, while p_{2} is extreme.

- E.g., take $p_{1}(z)=\frac{1}{2}\left(z^{2}+1\right)$ and $p_{2}(z)=\frac{1}{2 \sqrt{2}}\left(z^{2}+2 i z+1\right)$.

Open questions

- A few questions, to conclude with:

Open questions

- A few questions, to conclude with:
- (1) What happens in higher dimensions (say, on \mathbb{T}^{d} in place of \mathbb{T})?

Open questions

- A few questions, to conclude with:
- (1) What happens in higher dimensions (say, on \mathbb{T}^{d} in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?

Open questions

- A few questions, to conclude with:
- (1) What happens in higher dimensions (say, on \mathbb{T}^{d} in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H_{Λ}^{1} and H_{Λ}^{∞} when neither Λ nor $\mathbb{Z}_{+} \backslash \Lambda$ is finite?

Open questions

- A few questions, to conclude with:
- (1) What happens in higher dimensions (say, on \mathbb{T}^{d} in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H_{Λ}^{1} and H_{Λ}^{∞} when neither Λ nor $\mathbb{Z}_{+} \backslash \Lambda$ is finite?
- (4) What happens between H^{1} and L^{1} ? More precisely, for which sets $E \subset \mathbb{Z}_{\text {- }}$ does the unit ball of

$$
\left\{f \in L^{1}: \operatorname{spec} f \subset\left(\mathbb{Z}_{+} \cup E\right)\right\}
$$

have extreme points?

Open questions

- A few questions, to conclude with:
- (1) What happens in higher dimensions (say, on \mathbb{T}^{d} in place of \mathbb{T})?
- (2) What happens on the line (i.e., on \mathbb{R} in place of \mathbb{T})?
- (3) What about H_{Λ}^{1} and H_{Λ}^{∞} when neither Λ nor $\mathbb{Z}_{+} \backslash \Lambda$ is finite?
- (4) What happens between H^{1} and L^{1} ? More precisely, for which sets $E \subset \mathbb{Z}_{\text {- }}$ does the unit ball of

$$
\left\{f \in L^{1}: \operatorname{spec} f \subset\left(\mathbb{Z}_{+} \cup E\right)\right\}
$$

have extreme points?

- (5) What are the extreme points in the model space K_{θ}^{∞} ?

Last slide

$\sim \sim \sim$ Snip, snap, snout, this tale's told out. $\sim \sim \sim$

Last slide

$\sim \sim \sim$ Snip, snap, snout, this tale's told out. $\sim \sim \sim$ $* * * * * * * * * *$ The End $* * * * * * * * * *$

Last slide

$\sim \sim \sim$ Snip, snap, snout, this tale's told out. $\sim \sim \sim$ $* * * * * * * * * *$ The End $* * * * * * * * * *$

