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Exposed points

Given a Banach space X = (X , ‖ · ‖), recall the notation

ball (X ) := {x ∈ X : ‖x‖ ≤ 1}.

Definition. A point x ∈ ball (X ) is said to be exposed for the ball if
there exists φ ∈ X ∗ with ‖φ‖ = 1 such that

{y ∈ ball(X ) : φ(y) = 1} = {x}.

(This means that x is the only point of contact between a certain
hyperplane and the ball.)
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Exposed points

Observation. Every exposed point of ball (X ) is extreme.

Indeed, suppose that x ∈ ball (X ) is an exposed point, and let φ ∈ X ∗

be a (unit-norm) functional related to it as in the Definition above.

Now if x = 1
2 (y + z) for some y , z ∈ ball (X ), then we have

1 = φ(x) =
1

2
(φ(y) + φ(z)) ,

where |φ(y)| ≤ 1 and |φ(z)| ≤ 1.

Because 1 is an extreme point of D, we see that φ(y) = φ(z) = 1.

And since x is an exposed point of ball (X ), with exposing functional
φ, it follows that y = z = x .
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Exposed points in subspaces of L1

Now suppose that (Ω, µ) is a measure space and X is a subspace of
L1 = L1(Ω, µ), endowed with the usual norm ‖f ‖1 :=

∫
Ω |f |dµ.

Theorem

Let f ∈ X be a function with ‖f ‖1 = 1 satisfying f 6= 0 a.e. on Ω. TFAE:
(i) f is an exposed point of ball (X ).
(ii) Whenever h : Ω→ [0,∞) is a measurable function with fh ∈ X , we
have h = const a.e. on Ω.

Remarks. (1) If h ∈ L∞R and fh ∈ X , then h0 := h + ‖h‖∞ satisfies
h0 ≥ 0 and fh0 ∈ X . Thus, condition (ii) is stronger (as it should be!)
than its counterpart that arises for extreme points.

(2) Condition (ii) means that f is uniquely determined, among the
unit-norm functions in X , by its argument f /|f |.
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Exposed points in subspaces of L1

Proof. By Hahn–Banach, every unit-norm functional from X ∗ is
induced by a function Φ ∈ L∞ with ‖Φ‖∞ = 1.

Since
∫
|f | = 1, the equality

∫
Φf = 1 holds iff Φ = |f |/f .

Consequently, for a unit-norm function g ∈ X , we have∫
Φf =

∫
Φg = 1 iff

(∗) |f |/f = |g |/g a.e.

Now, if there is a nonconstant function h ≥ 0 with fh ∈ X , then
g = fh/‖fh‖1 is a unit-norm function in X , g 6= f , and (∗) holds.

Conversely, if g is a unit-norm function in X , g 6= f , making (∗)
true, then h = |g |/|f | is nonconstant and fh = g ∈ X .

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 30/11/2021 5 / 24



Exposed points in subspaces of L1

Proof. By Hahn–Banach, every unit-norm functional from X ∗ is
induced by a function Φ ∈ L∞ with ‖Φ‖∞ = 1.

Since
∫
|f | = 1, the equality

∫
Φf = 1 holds iff Φ = |f |/f .

Consequently, for a unit-norm function g ∈ X , we have∫
Φf =

∫
Φg = 1 iff

(∗) |f |/f = |g |/g a.e.

Now, if there is a nonconstant function h ≥ 0 with fh ∈ X , then
g = fh/‖fh‖1 is a unit-norm function in X , g 6= f , and (∗) holds.

Conversely, if g is a unit-norm function in X , g 6= f , making (∗)
true, then h = |g |/|f | is nonconstant and fh = g ∈ X .

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 30/11/2021 5 / 24



Exposed points in subspaces of L1

Proof. By Hahn–Banach, every unit-norm functional from X ∗ is
induced by a function Φ ∈ L∞ with ‖Φ‖∞ = 1.

Since
∫
|f | = 1, the equality

∫
Φf = 1 holds iff Φ = |f |/f .

Consequently, for a unit-norm function g ∈ X , we have∫
Φf =

∫
Φg = 1 iff

(∗) |f |/f = |g |/g a.e.

Now, if there is a nonconstant function h ≥ 0 with fh ∈ X , then
g = fh/‖fh‖1 is a unit-norm function in X , g 6= f , and (∗) holds.

Conversely, if g is a unit-norm function in X , g 6= f , making (∗)
true, then h = |g |/|f | is nonconstant and fh = g ∈ X .

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 30/11/2021 5 / 24



Exposed points in subspaces of L1

Proof. By Hahn–Banach, every unit-norm functional from X ∗ is
induced by a function Φ ∈ L∞ with ‖Φ‖∞ = 1.

Since
∫
|f | = 1, the equality

∫
Φf = 1 holds iff Φ = |f |/f .

Consequently, for a unit-norm function g ∈ X , we have∫
Φf =

∫
Φg = 1 iff

(∗) |f |/f = |g |/g a.e.

Now, if there is a nonconstant function h ≥ 0 with fh ∈ X , then
g = fh/‖fh‖1 is a unit-norm function in X , g 6= f , and (∗) holds.

Conversely, if g is a unit-norm function in X , g 6= f , making (∗)
true, then h = |g |/|f | is nonconstant and fh = g ∈ X .

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 30/11/2021 5 / 24



Exposed points in subspaces of L1

Proof. By Hahn–Banach, every unit-norm functional from X ∗ is
induced by a function Φ ∈ L∞ with ‖Φ‖∞ = 1.

Since
∫
|f | = 1, the equality

∫
Φf = 1 holds iff Φ = |f |/f .

Consequently, for a unit-norm function g ∈ X , we have∫
Φf =

∫
Φg = 1 iff

(∗) |f |/f = |g |/g a.e.

Now, if there is a nonconstant function h ≥ 0 with fh ∈ X , then
g = fh/‖fh‖1 is a unit-norm function in X , g 6= f , and (∗) holds.

Conversely, if g is a unit-norm function in X , g 6= f , making (∗)
true, then h = |g |/|f | is nonconstant and fh = g ∈ X .

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 30/11/2021 5 / 24



Subspaces of H1

For subspaces of H1 we also have:

Theorem

Let X be a subspace of H1. Suppose f ∈ X is a function with ‖f ‖1 = 1
whose canonical factorization is f = IF , with I inner and F outer. TFAE:
(i) f is an exposed point of ball(X ).
(ii) Whenever h is a nonnegative function on T with fh ∈ X , we have
h = const a.e. on T.
(iii) Whenever G ∈ N+ satisfies G/I ≥ 0 and FG ∈ X , we have G = cI
for some constant c ≥ 0.

Here, N+ is the Smirnov class, i.e.,

N+ = {u/v : u, v ∈ H∞, v outer}.
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Exposed points in H1

What are the exposed points of ball (H1)?

Nobody knows... A description in terms of |f |
∣∣
T would be welcome.

A simple sufficient condition: If f ∈ H1 is an outer function with
‖f ‖1 = 1 and if 1/f ∈ L1, then f is an exposed point of ball (H1).

Indeed, if fh(=: g) ∈ H1 for some function h ≥ 0, then
h = g · 1

f ∈ H1/2. Since positive H1/2 functions are constants, we
have h = const.

A simple necessary condition: If f ∈ H1 is a unit-norm function of the
form f = (1 + J)2F , with J inner and F outer, then f is not exposed.

Indeed, letting h = −
(

1−J
1+J

)2
, we get fh = −(1− J)2F ∈ H1.

(Note that h ≥ 0.)
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Polynomials and entire functions

In other cases, though, the exposed points do admit a nice
characterization (and are far less mysterious).

Consider, for an example, the space PN of all (analytic) polynomials
of degree at most N, with norm ‖ · ‖1 = ‖ · ‖L1(T).

This can be viewed as a special case of the Toeplitz kernel

K1(ϕ) := {f ∈ H1 : zϕf ∈ H1}

associated with ϕ ∈ L∞(T).

Namely, for ϕ = zN+1, we have K1(ϕ) = PN .

The map f 7→ zϕf (=: f̃ ) reduces then to the following.
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Polynomials and entire functions

Together with a polynomial p ∈ PN we consider its “reflection”

p∗(z) := zNp (1/z), z ∈ C \ {0}.

Equivalently, if p(z) =
∑N

k=0 ckz
k , then p∗(z) =

∑N
k=0 ckz

N−k .

Now, for a polynomial p ∈ PN with ‖p‖1 = 1, we know (from a
theorem proved in Lecture 1) that p is an extreme point of ball (PN)
iff p and p∗ have no common zeros in D.

The zeros of p and p∗ being symmetric with respect to T, this last
condition can be stated in terms of p alone.
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∑N
k=0 ckz

N−k .

Now, for a polynomial p ∈ PN with ‖p‖1 = 1, we know (from a
theorem proved in Lecture 1) that p is an extreme point of ball (PN)
iff p and p∗ have no common zeros in D.

The zeros of p and p∗ being symmetric with respect to T, this last
condition can be stated in terms of p alone.
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Polynomials and entire functions

In fact, we have

Theorem 1 (K.D., 2000)

Suppose p ∈ PN and ‖p‖1 = 1.
(A) Then p is an extreme point of ball (PN) if and only if the following
conditions hold:

(i) |p̂(0)|+ |p̂(N)| 6= 0;
(ii) p has no pair of symmetric zeros w. r. t. T.

(B) Furthermore, p is an exposed point of ball (PN) if and only if it
satisfies (i), (ii) and
(iii) p has no multiple zeros on T.
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Polynomials and entire functions

What happens if we move from T to R?

With a function f ∈ L1(R) we associate its Fourier transform

f̂ (ξ) :=

∫
R
e−ixξf (x) dx , ξ ∈ R,

and the set
spec f := clos{ξ ∈ R : f̂ (ξ) 6= 0}.

Finally, given σ > 0, we define the Paley–Wiener space PW 1
σ by

PW 1
σ := {f ∈ L1(R) : spec f ⊂ [−σ, σ]}.
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Polynomials and entire functions

The nonperiodic counterpart of Theorem 1 is:

Theorem 2 (K.D., 2000)

Let σ > 0. Suppose f ∈ PW 1
σ and ‖f ‖1 = 1.

(A) Then f is an extreme point of ball (PW 1
σ ) if and only if the following

conditions hold:

(i) At least one of the points ±σ is in spec f ;
(ii) f has no pair of symmetric zeros w. r. t. R.

(B) Furthermore, f is an exposed point of ball (PW 1
σ ) if and only if it

satisfies (i), (ii), as well as
(iii) f has no multiple zeros on R;
(iv)

∫
R |f (x)|h(x)dx =∞ whenever h is a nonconstant entire function of

exponential type 0 that satisfies h ≥ 0 on R.
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Polynomials and entire functions

What about more general Paley–Wiener type spaces?

More precisely, take a compact set S ⊂ R and define

PW 1
S := {f ∈ L1(R) : spec f ⊂ S}.

What are the extreme/exposed points of ball (PW 1
S )?

Here, a first step was made by A. Ulanovskii and I. Zlotnikov who
studied the case of

S = [−σ,−ρ] ∪ [ρ, σ], 0 < ρ < σ.
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Polynomials and entire functions

An interesting feature, unveiled by their work, is the following
dichotomy:

If ρ > σ/2 (“long gap”), then the situation is (roughly) similar to
that in Theorem 2; the extreme and exposed points of ball (PW 1

S ) are
then describable by “natural” criteria stated in similar terms.

If ρ < σ/2 (“short gap”), then those natural criteria break down
dramatically.

∗ ∗ ∗

Going back to T: the space P(Λ) of “fewnomials” with spectrum in
an (arbitrary) finite set Λ ⊂ Z+ has been studied, and the two types
of points in ball (P(Λ)) have been characterized.
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Moving to the opposite extreme: punctured H1

Question: What happens for functions in H1 with spectra in
Λ(⊂ Z+) when #(Z+ \ Λ) <∞?

Suppose that k1, . . . , kM are positive integers with

k1 < k2 < · · · < kM

and let
K := {k1, . . . , kM}.

Consider the punctured Hardy space

H1
K := {f ∈ L1(T) : spec f ⊂ Z+ \ K}.

Problem: Characterize (at least) the extreme points of ball(H1
K).
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Punctured H1: results

Recalling the Rudin–de Leeuw theorem, one feels a priori that the
extreme points should be “nearly outer,” in some sense or other.

In fact, if f = IF ∈ H1
K is extreme (here I is inner and F is outer),

then I must be a finite Blaschke product of degree not exceeding
M(= #K).

That is, I is writable (possibly after multiplication by a unimodular
constant) as

I (z) =
m∏
j=1

z − aj
1− ajz

,

where 0 ≤ m ≤ M and a1, . . . , am ∈ D.

In addition, there is an interplay between the two factors, I and F ,
which we now describe.
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Punctured H1: results

Consider the (outer) function

F0(z) := F (z)
m∏
j=1

(1− ajz)−2

and its coefficients

Ck := F̂0(k), k ∈ Z.

Note that F0 ∈ H1 and so Ck = 0 for all k < 0. Put

A(k) := ReCk , B(k) := ImCk (k ∈ Z).
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Punctured H1: results

Now define, for j = 1, . . . ,M and ` = 0, . . . ,m, the numbers

A+
j ,` := A(kj+`−m)+A(kj−`−m), B+

j ,` := B(kj+`−m)+B(kj−`−m),

A−j ,` := A(kj+`−m)−A(kj−`−m), B−j ,` := B(kj+`−m)−B(kj−`−m).

From these, we build the M × (m + 1) matrices

A+ :=
{
A+
j ,`

}
, B+ :=

{
B+
j ,`

}
and the M ×m matrices (with j as above and ` = 1, . . . ,m)

A− :=
{
A−j ,`

}
, B− :=

{
B−j ,`

}
.
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Punctured H1: results

Finally, we need the block matrix

M = MK
(
F , {aj}mj=1

)
:=

(
A+ B−
B+ −A−

)
,

which has 2M rows and 2m + 1 columns.

Our main result now says:

Theorem

Suppose that f ∈ H1
K and ‖f ‖1 = 1. Assume further that f = IF , where I

is inner and F is outer. Then f is an extreme point of ball(H1
K) if and only

if the following two conditions hold:
(a) I is a finite Blaschke product whose degree, say m, does not exceed M.

(b) The matrix M = MK

(
F , {aj}mj=1

)
, built as above from F and the

zeros {aj}mj=1 of I , has rank 2m.
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Punctured H1: results

Example: Suppose that K = {k}, where k ∈ N and k ≥ 2.
Let F ∈ H1 be an outer function with ‖F‖1 = 1 and F̂ (k − 1) = 0;
then put f (z) := zF (z). Applying the theorem, we get:

f is an extreme point of ball(H1
{k}) ⇐⇒ |F̂ (k − 2)| 6= |F̂ (k)|.

What about exposed points in H1
K ? Here is a simple sufficient

condition (for a general finite set K ⊂ N):

Proposition

If f is an extreme point of ball(H1
K) and if 1/f ∈ L1, then f is an exposed

point of ball(H1
K).
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Two lemmas

The proof of the theorem relies on two lemmas.

Lemma 1

Let X be a subspace of H1. Suppose that f ∈ X is a function with
‖f ‖1 = 1 whose canonical factorization is f = IF , with I inner and F
outer. The following conditions are equivalent:
(i) f is an extreme point of ball(X ).
(ii) Whenever h ∈ L∞R and fh ∈ X , we have h = const.
(iii) Whenever G ∈ H∞ is a function satisfying G/I ∈ L∞R and FG ∈ X ,
we have G = cI for some c ∈ R.

This will be applied with X = H1
K.
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Two lemmas

Definition: Given a nonnegative integer N and a polynomial p, we
say that p is N-symmetric if zNp(z) ∈ R for all z ∈ T.

Equivalently, a polynomial p is N-symmetric if (and only if)

p̂(N − k) = p̂(N + k)

for all k ∈ Z.

The general form of such a polynomial is

p(z) =
N−1∑
k=0

(αN−k − iβN−k) zk + 2α0z
N +

2N∑
k=N+1

(αk−N + iβk−N) zk ,

where α0, . . . , αN and β1, . . . , βN are real parameters.
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Two lemmas

We may therefore identify p with its coefficient vector

(α0, α1, . . . , αN , β1, . . . , βN) ∈ R2N+1.

Now comes

Lemma 2

Given N ∈ Z+ and points a1, . . . , aN ∈ D, let

B(z) :=
N∏
j=1

z − aj
1− ajz

.

The general form of a function G ∈ H∞ satisfying G/B ∈ L∞R is then

G (z) := p(z)
∏N

j=1(1− ajz)−2, where p is an N-symmetric polynomial.
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Last slide

To be continued...
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