GEOMETRY OF THE UNIT BALL IN VARIOUS HOLOMORPHIC SPACES

 Lecture 2Konstantin Dyakonov
ICREA \& Universitat de Barcelona

St. Petersburg November 30, 2021

Exposed points

- Given a Banach space $X=(X,\|\cdot\|)$, recall the notation

$$
\operatorname{ball}(X):=\{x \in X:\|x\| \leq 1\}
$$

Exposed points

- Given a Banach space $X=(X,\|\cdot\|)$, recall the notation

$$
\operatorname{ball}(X):=\{x \in X:\|x\| \leq 1\}
$$

- Definition. A point $x \in$ ball (X) is said to be exposed for the ball if there exists $\phi \in X^{*}$ with $\|\phi\|=1$ such that

$$
\{y \in \operatorname{ball}(X): \phi(y)=1\}=\{x\}
$$

Exposed points

- Given a Banach space $X=(X,\|\cdot\|)$, recall the notation

$$
\operatorname{ball}(X):=\{x \in X:\|x\| \leq 1\}
$$

- Definition. A point $x \in$ ball (X) is said to be exposed for the ball if there exists $\phi \in X^{*}$ with $\|\phi\|=1$ such that

$$
\{y \in \operatorname{ball}(X): \phi(y)=1\}=\{x\}
$$

- (This means that x is the only point of contact between a certain hyperplane and the ball.)

Exposed points

- Observation. Every exposed point of ball (X) is extreme.

Exposed points

- Observation. Every exposed point of ball (X) is extreme.
- Indeed, suppose that $x \in \operatorname{ball}(X)$ is an exposed point, and let $\phi \in X^{*}$ be a (unit-norm) functional related to it as in the Definition above.

Exposed points

- Observation. Every exposed point of ball (X) is extreme.
- Indeed, suppose that $x \in \operatorname{ball}(X)$ is an exposed point, and let $\phi \in X^{*}$ be a (unit-norm) functional related to it as in the Definition above.
- Now if $x=\frac{1}{2}(y+z)$ for some $y, z \in \operatorname{ball}(X)$, then we have

$$
1=\phi(x)=\frac{1}{2}(\phi(y)+\phi(z))
$$

where $|\phi(y)| \leq 1$ and $|\phi(z)| \leq 1$.

Exposed points

- Observation. Every exposed point of ball (X) is extreme.
- Indeed, suppose that $x \in \operatorname{ball}(X)$ is an exposed point, and let $\phi \in X^{*}$ be a (unit-norm) functional related to it as in the Definition above.
- Now if $x=\frac{1}{2}(y+z)$ for some $y, z \in \operatorname{ball}(X)$, then we have

$$
1=\phi(x)=\frac{1}{2}(\phi(y)+\phi(z))
$$

where $|\phi(y)| \leq 1$ and $|\phi(z)| \leq 1$.

- Because 1 is an extreme point of $\overline{\mathbb{D}}$, we see that $\phi(y)=\phi(z)=1$.

Exposed points

- Observation. Every exposed point of ball (X) is extreme.
- Indeed, suppose that $x \in \operatorname{ball}(X)$ is an exposed point, and let $\phi \in X^{*}$ be a (unit-norm) functional related to it as in the Definition above.
- Now if $x=\frac{1}{2}(y+z)$ for some $y, z \in \operatorname{ball}(X)$, then we have

$$
1=\phi(x)=\frac{1}{2}(\phi(y)+\phi(z))
$$

where $|\phi(y)| \leq 1$ and $|\phi(z)| \leq 1$.

- Because 1 is an extreme point of $\overline{\mathbb{D}}$, we see that $\phi(y)=\phi(z)=1$.
- And since x is an exposed point of ball (X), with exposing functional ϕ, it follows that $y=z=x$.

Exposed points in subspaces of L^{1}

- Now suppose that (Ω, μ) is a measure space and X is a subspace of $L^{1}=L^{1}(\Omega, \mu)$, endowed with the usual norm $\|f\|_{1}:=\int_{\Omega}|f| d \mu$.

Theorem

Let $f \in X$ be a function with $\|f\|_{1}=1$ satisfying $f \neq 0$ a.e. on Ω. TFAE: (i) f is an exposed point of ball (X).
(ii) Whenever $h: \Omega \rightarrow[0, \infty)$ is a measurable function with $f h \in X$, we have $h=$ const a.e. on Ω.

Exposed points in subspaces of L^{1}

- Now suppose that (Ω, μ) is a measure space and X is a subspace of $L^{1}=L^{1}(\Omega, \mu)$, endowed with the usual norm $\|f\|_{1}:=\int_{\Omega}|f| d \mu$.

Theorem

Let $f \in X$ be a function with $\|f\|_{1}=1$ satisfying $f \neq 0$ a.e. on Ω. TFAE: (i) f is an exposed point of ball (X).
(ii) Whenever $h: \Omega \rightarrow[0, \infty)$ is a measurable function with $f h \in X$, we have $h=$ const a.e. on Ω.

- Remarks. (1) If $h \in L_{\mathbb{R}}^{\infty}$ and $f h \in X$, then $h_{0}:=h+\|h\|_{\infty}$ satisfies $h_{0} \geq 0$ and $f h_{0} \in X$. Thus, condition (ii) is stronger (as it should be!) than its counterpart that arises for extreme points.

Exposed points in subspaces of L^{1}

- Now suppose that (Ω, μ) is a measure space and X is a subspace of $L^{1}=L^{1}(\Omega, \mu)$, endowed with the usual norm $\|f\|_{1}:=\int_{\Omega}|f| d \mu$.

Theorem

Let $f \in X$ be a function with $\|f\|_{1}=1$ satisfying $f \neq 0$ a.e. on Ω. TFAE: (i) f is an exposed point of ball (X).
(ii) Whenever $h: \Omega \rightarrow[0, \infty)$ is a measurable function with $f h \in X$, we have $h=$ const a.e. on Ω.

- Remarks. (1) If $h \in L_{\mathbb{R}}^{\infty}$ and $f h \in X$, then $h_{0}:=h+\|h\|_{\infty}$ satisfies $h_{0} \geq 0$ and $f h_{0} \in X$. Thus, condition (ii) is stronger (as it should be!) than its counterpart that arises for extreme points.
- (2) Condition (ii) means that f is uniquely determined, among the unit-norm functions in X, by its argument $f /|f|$.

Exposed points in subspaces of L^{1}

- Proof. By Hahn-Banach, every unit-norm functional from X^{*} is induced by a function $\Phi \in L^{\infty}$ with $\|\Phi\|_{\infty}=1$.

Exposed points in subspaces of L^{1}

- Proof. By Hahn-Banach, every unit-norm functional from X^{*} is induced by a function $\Phi \in L^{\infty}$ with $\|\Phi\|_{\infty}=1$.
- Since $\int|f|=1$, the equality $\int \Phi f=1$ holds iff $\Phi=|f| / f$.

Exposed points in subspaces of L^{1}

- Proof. By Hahn-Banach, every unit-norm functional from X^{*} is induced by a function $\Phi \in L^{\infty}$ with $\|\Phi\|_{\infty}=1$.
- Since $\int|f|=1$, the equality $\int \Phi f=1$ holds iff $\Phi=|f| / f$.
- Consequently, for a unit-norm function $g \in X$, we have $\int \Phi f=\int \Phi g=1 \mathrm{iff}$

$$
(*) \quad|f| / f=|g| / g \quad \text { a.e. }
$$

Exposed points in subspaces of L^{1}

- Proof. By Hahn-Banach, every unit-norm functional from X^{*} is induced by a function $\Phi \in L^{\infty}$ with $\|\Phi\|_{\infty}=1$.
- Since $\int|f|=1$, the equality $\int \Phi f=1$ holds iff $\Phi=|f| / f$.
- Consequently, for a unit-norm function $g \in X$, we have $\int \Phi f=\int \Phi g=1$ iff

$$
(*) \quad|f| / f=|g| / g \quad \text { a.e. }
$$

- Now, if there is a nonconstant function $h \geq 0$ with $f h \in X$, then $g=f h /\|f h\|_{1}$ is a unit-norm function in $X, g \neq f$, and ($*$) holds.

Exposed points in subspaces of L^{1}

- Proof. By Hahn-Banach, every unit-norm functional from X^{*} is induced by a function $\Phi \in L^{\infty}$ with $\|\Phi\|_{\infty}=1$.
- Since $\int|f|=1$, the equality $\int \Phi f=1$ holds iff $\Phi=|f| / f$.
- Consequently, for a unit-norm function $g \in X$, we have $\int \Phi f=\int \Phi g=1$ iff

$$
(*) \quad|f| / f=|g| / g \quad \text { a.e. }
$$

- Now, if there is a nonconstant function $h \geq 0$ with $f h \in X$, then $g=f h /\|f h\|_{1}$ is a unit-norm function in $X, g \neq f$, and ($*$) holds.
- Conversely, if g is a unit-norm function in $X, g \neq f$, making $(*)$ true, then $h=|g| /|f|$ is nonconstant and $f h=g \in X$.

Subspaces of H^{1}

- For subspaces of H^{1} we also have:

Theorem

Let X be a subspace of H^{1}. Suppose $f \in X$ is a function with $\|f\|_{1}=1$ whose canonical factorization is $f=I F$, with I inner and F outer. TFAE: (i) f is an exposed point of $\operatorname{ball}(X)$.
(ii) Whenever h is a nonnegative function on \mathbb{T} with $f h \in X$, we have $h=$ const a.e. on \mathbb{T}.
(iii) Whenever $G \in N^{+}$satisfies $G / I \geq 0$ and $F G \in X$, we have $G=c l$ for some constant $c \geq 0$.

Subspaces of H^{1}

- For subspaces of H^{1} we also have:

Theorem

Let X be a subspace of H^{1}. Suppose $f \in X$ is a function with $\|f\|_{1}=1$ whose canonical factorization is $f=I F$, with I inner and F outer. TFAE: (i) f is an exposed point of $\operatorname{ball}(X)$.
(ii) Whenever h is a nonnegative function on \mathbb{T} with $f h \in X$, we have $h=$ const a.e. on \mathbb{T}.
(iii) Whenever $G \in N^{+}$satisfies $G / I \geq 0$ and $F G \in X$, we have $G=c l$ for some constant $c \geq 0$.

- Here, N^{+}is the Smirnov class, i.e.,

$$
N^{+}=\left\{u / v: u, v \in H^{\infty}, v \text { outer }\right\}
$$

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?
- Nobody knows... A description in terms of $|f|_{\mathbb{T}}$ would be welcome.

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?
- Nobody knows... A description in terms of $|f|_{\mathbb{T}}$ would be welcome.
- A simple sufficient condition: If $f \in H^{1}$ is an outer function with $\|f\|_{1}=1$ and if $1 / f \in L^{1}$, then f is an exposed point of ball $\left(H^{1}\right)$.

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?
- Nobody knows... A description in terms of $|f|_{\mathbb{T}}$ would be welcome.
- A simple sufficient condition: If $f \in H^{1}$ is an outer function with $\|f\|_{1}=1$ and if $1 / f \in L^{1}$, then f is an exposed point of ball $\left(H^{1}\right)$.
- Indeed, if $f h(=: g) \in H^{1}$ for some function $h \geq 0$, then $h=g \cdot \frac{1}{f} \in H^{1 / 2}$. Since positive $H^{1 / 2}$ functions are constants, we have $h=$ const.

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?
- Nobody knows... A description in terms of $|f|_{\mathbb{T}}$ would be welcome.
- A simple sufficient condition: If $f \in H^{1}$ is an outer function with $\|f\|_{1}=1$ and if $1 / f \in L^{1}$, then f is an exposed point of ball $\left(H^{1}\right)$.
- Indeed, if $f h(=: g) \in H^{1}$ for some function $h \geq 0$, then $h=g \cdot \frac{1}{f} \in H^{1 / 2}$. Since positive $H^{1 / 2}$ functions are constants, we have $h=$ const.
- A simple necessary condition: If $f \in H^{1}$ is a unit-norm function of the form $f=(1+J)^{2} F$, with J inner and F outer, then f is not exposed.

Exposed points in H^{1}

- What are the exposed points of ball $\left(H^{1}\right)$?
- Nobody knows... A description in terms of $|f|_{\mathbb{T}}$ would be welcome.
- A simple sufficient condition: If $f \in H^{1}$ is an outer function with $\|f\|_{1}=1$ and if $1 / f \in L^{1}$, then f is an exposed point of $\operatorname{ball}\left(H^{1}\right)$.
- Indeed, if $f h(=: g) \in H^{1}$ for some function $h \geq 0$, then $h=g \cdot \frac{1}{f} \in H^{1 / 2}$. Since positive $H^{1 / 2}$ functions are constants, we have $h=$ const.
- A simple necessary condition: If $f \in H^{1}$ is a unit-norm function of the form $f=(1+J)^{2} F$, with J inner and F outer, then f is not exposed.
- Indeed, letting $h=-\left(\frac{1-J}{1+J}\right)^{2}$, we get $f h=-(1-J)^{2} F \in H^{1}$. (Note that $h \geq 0$.)

Polynomials and entire functions

- In other cases, though, the exposed points do admit a nice characterization (and are far less mysterious).

Polynomials and entire functions

- In other cases, though, the exposed points do admit a nice characterization (and are far less mysterious).
- Consider, for an example, the space \mathcal{P}_{N} of all (analytic) polynomials of degree at most N, with norm $\|\cdot\|_{1}=\|\cdot\|_{L^{1}(\mathbb{T})}$.

Polynomials and entire functions

- In other cases, though, the exposed points do admit a nice characterization (and are far less mysterious).
- Consider, for an example, the space \mathcal{P}_{N} of all (analytic) polynomials of degree at most N, with norm $\|\cdot\|_{1}=\|\cdot\|_{L^{1}(\mathbb{T})}$.
- This can be viewed as a special case of the Toeplitz kernel

$$
K_{1}(\varphi):=\left\{f \in H^{1}: \overline{z \varphi f} \in H^{1}\right\}
$$

associated with $\varphi \in L^{\infty}(\mathbb{T})$.

Polynomials and entire functions

- In other cases, though, the exposed points do admit a nice characterization (and are far less mysterious).
- Consider, for an example, the space \mathcal{P}_{N} of all (analytic) polynomials of degree at most N, with norm $\|\cdot\|_{1}=\|\cdot\|_{L^{1}(\mathbb{T})}$.
- This can be viewed as a special case of the Toeplitz kernel

$$
K_{1}(\varphi):=\left\{f \in H^{1}: \overline{z \varphi f} \in H^{1}\right\}
$$

associated with $\varphi \in L^{\infty}(\mathbb{T})$.

- Namely, for $\varphi=\bar{z}^{N+1}$, we have $K_{1}(\varphi)=\mathcal{P}_{N}$.

Polynomials and entire functions

- In other cases, though, the exposed points do admit a nice characterization (and are far less mysterious).
- Consider, for an example, the space \mathcal{P}_{N} of all (analytic) polynomials of degree at most N, with norm $\|\cdot\|_{1}=\|\cdot\|_{L^{1}(\mathbb{T})}$.
- This can be viewed as a special case of the Toeplitz kernel

$$
K_{1}(\varphi):=\left\{f \in H^{1}: \overline{z \varphi f} \in H^{1}\right\}
$$

associated with $\varphi \in L^{\infty}(\mathbb{T})$.

- Namely, for $\varphi=\bar{z}^{N+1}$, we have $K_{1}(\varphi)=\mathcal{P}_{N}$.
- The map $f \mapsto \overline{z \varphi f}(=: \widetilde{f})$ reduces then to the following.

Polynomials and entire functions

- Together with a polynomial $p \in \mathcal{P}_{N}$ we consider its "reflection"

$$
p^{*}(z):=z^{N} \overline{p(1 / \bar{z})}, \quad z \in \mathbb{C} \backslash\{0\} .
$$

Polynomials and entire functions

- Together with a polynomial $p \in \mathcal{P}_{N}$ we consider its "reflection"

$$
p^{*}(z):=z^{N} \overline{p(1 / \bar{z})}, \quad z \in \mathbb{C} \backslash\{0\} .
$$

- Equivalently, if $p(z)=\sum_{k=0}^{N} c_{k} z^{k}$, then $p^{*}(z)=\sum_{k=0}^{N} \bar{c}_{k} z^{N-k}$.

Polynomials and entire functions

- Together with a polynomial $p \in \mathcal{P}_{N}$ we consider its "reflection"

$$
p^{*}(z):=z^{N} \overline{p(1 / \bar{z})}, \quad z \in \mathbb{C} \backslash\{0\} .
$$

- Equivalently, if $p(z)=\sum_{k=0}^{N} c_{k} z^{k}$, then $p^{*}(z)=\sum_{k=0}^{N} \bar{c}_{k} z^{N-k}$.
- Now, for a polynomial $p \in \mathcal{P}_{N}$ with $\|p\|_{1}=1$, we know (from a theorem proved in Lecture 1) that p is an extreme point of ball $\left(\mathcal{P}_{N}\right)$ iff p and p^{*} have no common zeros in \mathbb{D}.

Polynomials and entire functions

- Together with a polynomial $p \in \mathcal{P}_{N}$ we consider its "reflection"

$$
p^{*}(z):=z^{N} \overline{p(1 / \bar{z})}, \quad z \in \mathbb{C} \backslash\{0\} .
$$

- Equivalently, if $p(z)=\sum_{k=0}^{N} c_{k} z^{k}$, then $p^{*}(z)=\sum_{k=0}^{N} \bar{c}_{k} z^{N-k}$.
- Now, for a polynomial $p \in \mathcal{P}_{N}$ with $\|p\|_{1}=1$, we know (from a theorem proved in Lecture 1) that p is an extreme point of ball $\left(\mathcal{P}_{N}\right)$ iff p and p^{*} have no common zeros in \mathbb{D}.
- The zeros of p and p^{*} being symmetric with respect to \mathbb{T}, this last condition can be stated in terms of p alone.

Polynomials and entire functions

- In fact, we have

Theorem 1 (K.D., 2000)

Suppose $p \in \mathcal{P}_{N}$ and $\|p\|_{1}=1$.
(A) Then p is an extreme point of ball $\left(\mathcal{P}_{N}\right)$ if and only if the following conditions hold:
(i) $|\widehat{p}(0)|+|\widehat{p}(N)| \neq 0$;
(ii) p has no pair of symmetric zeros w.r.t. \mathbb{T}.
(B) Furthermore, p is an exposed point of ball $\left(\mathcal{P}_{N}\right)$ if and only if it satisfies (i), (ii) and
(iii) p has no multiple zeros on \mathbb{T}.

Polynomials and entire functions

- What happens if we move from \mathbb{T} to \mathbb{R} ?

Polynomials and entire functions

- What happens if we move from \mathbb{T} to \mathbb{R} ?
- With a function $f \in L^{1}(\mathbb{R})$ we associate its Fourier transform

$$
\widehat{f}(\xi):=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x, \quad \xi \in \mathbb{R}
$$

and the set

$$
\operatorname{spec} f:=\operatorname{clos}\{\xi \in \mathbb{R}: \widehat{f}(\xi) \neq 0\}
$$

Polynomials and entire functions

- What happens if we move from \mathbb{T} to \mathbb{R} ?
- With a function $f \in L^{1}(\mathbb{R})$ we associate its Fourier transform

$$
\widehat{f}(\xi):=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x, \quad \xi \in \mathbb{R}
$$

and the set

$$
\operatorname{spec} f:=\operatorname{clos}\{\xi \in \mathbb{R}: \widehat{f}(\xi) \neq 0\}
$$

- Finally, given $\sigma>0$, we define the Paley-Wiener space $P W_{\sigma}^{1}$ by

$$
P W_{\sigma}^{1}:=\left\{f \in L^{1}(\mathbb{R}): \operatorname{spec} f \subset[-\sigma, \sigma]\right\}
$$

Polynomials and entire functions

- The nonperiodic counterpart of Theorem 1 is:

Theorem 2 (K.D., 2000)

Let $\sigma>0$. Suppose $f \in P W_{\sigma}^{1}$ and $\|f\|_{1}=1$.
(A) Then f is an extreme point of ball $\left(P W_{\sigma}^{1}\right)$ if and only if the following conditions hold:
(i) At least one of the points $\pm \sigma$ is in $\operatorname{spec} f$;
(ii) f has no pair of symmetric zeros w.r.t. \mathbb{R}.
(B) Furthermore, f is an exposed point of ball $\left(P W_{\sigma}^{1}\right)$ if and only if it satisfies (i), (ii), as well as
(iii) f has no multiple zeros on \mathbb{R};
(iv) $\int_{\mathbb{R}}|f(x)| h(x) d x=\infty$ whenever h is a nonconstant entire function of exponential type 0 that satisfies $h \geq 0$ on \mathbb{R}.

Polynomials and entire functions

- What about more general Paley-Wiener type spaces?

Polynomials and entire functions

- What about more general Paley-Wiener type spaces?
- More precisely, take a compact set $S \subset \mathbb{R}$ and define

$$
P W_{S}^{1}:=\left\{f \in L^{1}(\mathbb{R}): \operatorname{spec} f \subset S\right\} .
$$

Polynomials and entire functions

- What about more general Paley-Wiener type spaces?
- More precisely, take a compact set $S \subset \mathbb{R}$ and define

$$
P W_{S}^{1}:=\left\{f \in L^{1}(\mathbb{R}): \operatorname{spec} f \subset S\right\} .
$$

- What are the extreme/exposed points of ball $\left(P W_{S}^{1}\right)$?

Polynomials and entire functions

- What about more general Paley-Wiener type spaces?
- More precisely, take a compact set $S \subset \mathbb{R}$ and define

$$
P W_{S}^{1}:=\left\{f \in L^{1}(\mathbb{R}): \operatorname{spec} f \subset S\right\}
$$

- What are the extreme/exposed points of ball $\left(P W_{S}^{1}\right)$?
- Here, a first step was made by A. Ulanovskii and I. Zlotnikov who studied the case of

$$
S=[-\sigma,-\rho] \cup[\rho, \sigma], \quad 0<\rho<\sigma
$$

Polynomials and entire functions

- An interesting feature, unveiled by their work, is the following dichotomy:

Polynomials and entire functions

- An interesting feature, unveiled by their work, is the following dichotomy:
- If $\rho>\sigma / 2$ ("long gap"), then the situation is (roughly) similar to that in Theorem 2; the extreme and exposed points of ball ($P W_{S}^{1}$) are then describable by "natural" criteria stated in similar terms.

Polynomials and entire functions

- An interesting feature, unveiled by their work, is the following dichotomy:
- If $\rho>\sigma / 2$ ("long gap"), then the situation is (roughly) similar to that in Theorem 2; the extreme and exposed points of ball ($P W_{S}^{1}$) are then describable by "natural" criteria stated in similar terms.
- If $\rho<\sigma / 2$ ("short gap"), then those natural criteria break down dramatically.

Polynomials and entire functions

- An interesting feature, unveiled by their work, is the following dichotomy:
- If $\rho>\sigma / 2$ ("long gap"), then the situation is (roughly) similar to that in Theorem 2; the extreme and exposed points of ball ($P W_{S}^{1}$) are then describable by "natural" criteria stated in similar terms.
- If $\rho<\sigma / 2$ ("short gap"), then those natural criteria break down dramatically.

$$
* \quad * \quad *
$$

- Going back to \mathbb{T} : the space $\mathcal{P}(\Lambda)$ of "fewnomials" with spectrum in an (arbitrary) finite set $\Lambda \subset \mathbb{Z}_{+}$has been studied, and the two types of points in ball $(\mathcal{P}(\Lambda))$ have been characterized.

Moving to the opposite extreme: punctured H^{1}

- Question: What happens for functions in H^{1} with spectra in $\Lambda\left(\subset \mathbb{Z}_{+}\right)$when $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$?

Moving to the opposite extreme: punctured H^{1}

- Question: What happens for functions in H^{1} with spectra in $\Lambda\left(\subset \mathbb{Z}_{+}\right)$when $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$?
- Suppose that k_{1}, \ldots, k_{M} are positive integers with

$$
k_{1}<k_{2}<\cdots<k_{M}
$$

and let

$$
\mathcal{K}:=\left\{k_{1}, \ldots, k_{M}\right\}
$$

Moving to the opposite extreme: punctured H^{1}

- Question: What happens for functions in H^{1} with spectra in $\Lambda\left(\subset \mathbb{Z}_{+}\right)$when $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$?
- Suppose that k_{1}, \ldots, k_{M} are positive integers with

$$
k_{1}<k_{2}<\cdots<k_{M}
$$

and let

$$
\mathcal{K}:=\left\{k_{1}, \ldots, k_{M}\right\}
$$

- Consider the punctured Hardy space

$$
H_{\mathcal{K}}^{1}:=\left\{f \in L^{1}(\mathbb{T}): \operatorname{spec} f \subset \mathbb{Z}_{+} \backslash \mathcal{K}\right\}
$$

Moving to the opposite extreme: punctured H^{1}

- Question: What happens for functions in H^{1} with spectra in $\Lambda\left(\subset \mathbb{Z}_{+}\right)$when $\#\left(\mathbb{Z}_{+} \backslash \Lambda\right)<\infty$?
- Suppose that k_{1}, \ldots, k_{M} are positive integers with

$$
k_{1}<k_{2}<\cdots<k_{M}
$$

and let

$$
\mathcal{K}:=\left\{k_{1}, \ldots, k_{M}\right\}
$$

- Consider the punctured Hardy space

$$
H_{\mathcal{K}}^{1}:=\left\{f \in L^{1}(\mathbb{T}): \operatorname{spec} f \subset \mathbb{Z}_{+} \backslash \mathcal{K}\right\} .
$$

- Problem: Characterize (at least) the extreme points of ball $\left(H_{\mathcal{K}}^{1}\right)$.

Punctured H^{1} : results

- Recalling the Rudin-de Leeuw theorem, one feels a priori that the extreme points should be "nearly outer," in some sense or other.

Punctured H^{1} : results

- Recalling the Rudin-de Leeuw theorem, one feels a priori that the extreme points should be "nearly outer," in some sense or other.
- In fact, if $f=I F \in H_{\mathcal{K}}^{1}$ is extreme (here I is inner and F is outer), then I must be a finite Blaschke product of degree not exceeding $M(=\# \mathcal{K})$.

Punctured H^{1} : results

- Recalling the Rudin-de Leeuw theorem, one feels a priori that the extreme points should be "nearly outer," in some sense or other.
- In fact, if $f=I F \in H_{\mathcal{K}}^{1}$ is extreme (here l is inner and F is outer), then I must be a finite Blaschke product of degree not exceeding $M(=\# \mathcal{K})$.
- That is, I is writable (possibly after multiplication by a unimodular constant) as

$$
I(z)=\prod_{j=1}^{m} \frac{z-a_{j}}{1-\bar{a}_{j} z}
$$

where $0 \leq m \leq M$ and $a_{1}, \ldots, a_{m} \in \mathbb{D}$.

Punctured H^{1} : results

- Recalling the Rudin-de Leeuw theorem, one feels a priori that the extreme points should be "nearly outer," in some sense or other.
- In fact, if $f=I F \in H_{\mathcal{K}}^{1}$ is extreme (here I is inner and F is outer), then I must be a finite Blaschke product of degree not exceeding $M(=\# \mathcal{K})$.
- That is, I is writable (possibly after multiplication by a unimodular constant) as

$$
I(z)=\prod_{j=1}^{m} \frac{z-a_{j}}{1-\bar{a}_{j} z},
$$

where $0 \leq m \leq M$ and $a_{1}, \ldots, a_{m} \in \mathbb{D}$.

- In addition, there is an interplay between the two factors, I and F, which we now describe.

Punctured H^{1} : results

- Consider the (outer) function

$$
F_{0}(z):=F(z) \prod_{j=1}^{m}\left(1-\bar{a}_{j} z\right)^{-2}
$$

and its coefficients

$$
C_{k}:=\widehat{F}_{0}(k), \quad k \in \mathbb{Z}
$$

Punctured H^{1} : results

- Consider the (outer) function

$$
F_{0}(z):=F(z) \prod_{j=1}^{m}\left(1-\bar{a}_{j} z\right)^{-2}
$$

and its coefficients

$$
C_{k}:=\widehat{F}_{0}(k), \quad k \in \mathbb{Z}
$$

- Note that $F_{0} \in H^{1}$ and so $C_{k}=0$ for all $k<0$. Put

$$
A(k):=\operatorname{Re} C_{k}, \quad B(k):=\operatorname{Im} C_{k} \quad(k \in \mathbb{Z})
$$

Punctured H^{1} : results

- Now define, for $j=1, \ldots, M$ and $\ell=0, \ldots, m$, the numbers

$$
\begin{array}{ll}
A_{j, \ell}^{+}:=A\left(k_{j}+\ell-m\right)+A\left(k_{j}-\ell-m\right), & B_{j, \ell}^{+}:=B\left(k_{j}+\ell-m\right)+B\left(k_{j}-\ell-m\right), \\
A_{j, \ell}^{-}:=A\left(k_{j}+\ell-m\right)-A\left(k_{j}-\ell-m\right), & B_{j, \ell}^{-}:=B\left(k_{j}+\ell-m\right)-B\left(k_{j}-\ell-m\right) .
\end{array}
$$

Punctured H^{1} : results

- Now define, for $j=1, \ldots, M$ and $\ell=0, \ldots, m$, the numbers

$$
\begin{array}{ll}
A_{j, \ell}^{+}:=A\left(k_{j}+\ell-m\right)+A\left(k_{j}-\ell-m\right), & B_{j, \ell}^{+}:=B\left(k_{j}+\ell-m\right)+B\left(k_{j}-\ell-m\right), \\
A_{j, \ell}^{-}:=A\left(k_{j}+\ell-m\right)-A\left(k_{j}-\ell-m\right), & B_{j, \ell}^{-}:=B\left(k_{j}+\ell-m\right)-B\left(k_{j}-\ell-m\right) .
\end{array}
$$

- From these, we build the $M \times(m+1)$ matrices

$$
\mathcal{A}^{+}:=\left\{A_{j, \ell}^{+}\right\}, \quad \mathcal{B}^{+}:=\left\{B_{j, \ell}^{+}\right\}
$$

and the $M \times m$ matrices (with j as above and $\ell=1, \ldots, m$)

$$
\mathcal{A}^{-}:=\left\{A_{j, \ell}^{-}\right\}, \quad \mathcal{B}^{-}:=\left\{B_{j, \ell}^{-}\right\} .
$$

Punctured H^{1} : results

- Finally, we need the block matrix

$$
\mathfrak{M}=\mathfrak{M}_{\mathcal{K}}\left(F,\left\{a_{j}\right\}_{j=1}^{m}\right):=\left(\begin{array}{cc}
\mathcal{A}^{+} & \mathcal{B}^{-} \\
\mathcal{B}^{+} & -\mathcal{A}^{-}
\end{array}\right),
$$

which has $2 M$ rows and $2 m+1$ columns.

Punctured H^{1} : results

- Finally, we need the block matrix

$$
\mathfrak{M}=\mathfrak{M}_{\mathcal{K}}\left(F,\left\{a_{j}\right\}_{j=1}^{m}\right):=\left(\begin{array}{cc}
\mathcal{A}^{+} & \mathcal{B}^{-} \\
\mathcal{B}^{+} & -\mathcal{A}^{-}
\end{array}\right)
$$

which has $2 M$ rows and $2 m+1$ columns.

- Our main result now says:

Theorem

Suppose that $f \in H_{\mathcal{K}}^{1}$ and $\|f\|_{1}=1$. Assume further that $f=I F$, where I is inner and F is outer. Then f is an extreme point of ball $\left(H_{\mathcal{K}}^{1}\right)$ if and only if the following two conditions hold:
(a) I is a finite Blaschke product whose degree, say m, does not exceed M. (b) The matrix $\mathfrak{M}=\mathfrak{M}_{\mathcal{K}}\left(F,\left\{a_{j}\right\}_{j=1}^{m}\right)$, built as above from F and the zeros $\left\{a_{j}\right\}_{j=1}^{m}$ of I, has rank $2 m$.

Punctured H^{1} : results

- Example: Suppose that $\mathcal{K}=\{k\}$, where $k \in \mathbb{N}$ and $k \geq 2$. Let $F \in H^{1}$ be an outer function with $\|F\|_{1}=1$ and $\widehat{F}(k-1)=0$; then put $f(z):=z F(z)$. Applying the theorem, we get: f is an extreme point of $\operatorname{ball}\left(H_{\{k\}}^{1}\right) \Longleftrightarrow|\widehat{F}(k-2)| \neq|\widehat{F}(k)|$.

Punctured H^{1} : results

- Example: Suppose that $\mathcal{K}=\{k\}$, where $k \in \mathbb{N}$ and $k \geq 2$. Let $F \in H^{1}$ be an outer function with $\|F\|_{1}=1$ and $\widehat{F}(k-1)=0$; then put $f(z):=z F(z)$. Applying the theorem, we get: f is an extreme point of $\operatorname{ball}\left(H_{\{k\}}^{1}\right) \Longleftrightarrow|\widehat{F}(k-2)| \neq|\widehat{F}(k)|$.
- What about exposed points in $H_{\mathcal{K}}^{1}$? Here is a simple sufficient condition (for a general finite set $\mathcal{K} \subset \mathbb{N}$):

Proposition

If f is an extreme point of ball $\left(H_{\mathcal{K}}^{1}\right)$ and if $1 / f \in L^{1}$, then f is an exposed point of $\operatorname{ball}\left(H_{\mathcal{K}}^{1}\right)$.

Two lemmas

- The proof of the theorem relies on two lemmas.

Lemma 1

Let X be a subspace of H^{1}. Suppose that $f \in X$ is a function with $\|f\|_{1}=1$ whose canonical factorization is $f=I F$, with I inner and F outer. The following conditions are equivalent:
(i) f is an extreme point of ball (X).
(ii) Whenever $h \in L_{\mathbb{R}}^{\infty}$ and fh $\in X$, we have $h=$ const.
(iii) Whenever $G \in H^{\infty}$ is a function satisfying $G / I \in L_{\mathbb{R}}^{\infty}$ and $F G \in X$, we have $G=c l$ for some $c \in \mathbb{R}$.

Two lemmas

- The proof of the theorem relies on two lemmas.

Lemma 1

Let X be a subspace of H^{1}. Suppose that $f \in X$ is a function with $\|f\|_{1}=1$ whose canonical factorization is $f=I F$, with I inner and F outer. The following conditions are equivalent:
(i) f is an extreme point of ball (X).
(ii) Whenever $h \in L_{\mathbb{R}}^{\infty}$ and fh $\in X$, we have $h=$ const.
(iii) Whenever $G \in H^{\infty}$ is a function satisfying $G / I \in L_{\mathbb{R}}^{\infty}$ and $F G \in X$, we have $G=c l$ for some $c \in \mathbb{R}$.

- This will be applied with $X=H_{\mathcal{K}}^{1}$.

Two lemmas

- Definition: Given a nonnegative integer N and a polynomial p, we say that p is N-symmetric if $\bar{z}^{N} p(z) \in \mathbb{R}$ for all $z \in \mathbb{T}$.

Two lemmas

- Definition: Given a nonnegative integer N and a polynomial p, we say that p is N-symmetric if $\bar{z}^{N} p(z) \in \mathbb{R}$ for all $z \in \mathbb{T}$.
- Equivalently, a polynomial p is N-symmetric if (and only if)

$$
\widehat{p}(N-k)=\overline{\widehat{p}(N+k)}
$$

for all $k \in \mathbb{Z}$.

Two lemmas

- Definition: Given a nonnegative integer N and a polynomial p, we say that p is N-symmetric if $\bar{z}^{N} p(z) \in \mathbb{R}$ for all $z \in \mathbb{T}$.
- Equivalently, a polynomial p is N-symmetric if (and only if)

$$
\widehat{p}(N-k)=\overline{\widehat{p}(N+k)}
$$

for all $k \in \mathbb{Z}$.

- The general form of such a polynomial is

$$
p(z)=\sum_{k=0}^{N-1}\left(\alpha_{N-k}-i \beta_{N-k}\right) z^{k}+2 \alpha_{0} z^{N}+\sum_{k=N+1}^{2 N}\left(\alpha_{k-N}+i \beta_{k-N}\right) z^{k}
$$

where $\alpha_{0}, \ldots, \alpha_{N}$ and $\beta_{1}, \ldots, \beta_{N}$ are real parameters.

Two lemmas

- We may therefore identify p with its coefficient vector

$$
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}, \beta_{1}, \ldots, \beta_{N}\right) \in \mathbb{R}^{2 N+1}
$$

Two lemmas

- We may therefore identify p with its coefficient vector

$$
\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{N}, \beta_{1}, \ldots, \beta_{N}\right) \in \mathbb{R}^{2 N+1}
$$

- Now comes

Lemma 2

Given $N \in \mathbb{Z}_{+}$and points $a_{1}, \ldots, a_{N} \in \mathbb{D}$, let

$$
B(z):=\prod_{j=1}^{N} \frac{z-a_{j}}{1-\bar{a}_{j} z} .
$$

The general form of a function $G \in H^{\infty}$ satisfying $G / B \in L_{\mathbb{R}}^{\infty}$ is then $G(z):=p(z) \prod_{j=1}^{N}\left(1-\bar{a}_{j} z\right)^{-2}$, where p is an N-symmetric polynomial.

Last slide

Last slide

To be continued...

