GEOMETRY OF THE UNIT BALL IN VARIOUS HOLOMORPHIC SPACES Lecture 1

Konstantin Dyakonov

ICREA & Universitat de Barcelona

St. Petersburg November 25, 2021

K. M. Dyakonov (ICREA & UB)

• Suppose S is a convex set in a vector space V.

- Suppose S is a convex set in a vector space V.
- A point x ∈ S is said to be an *extreme point* of S if, whenever we have

$$x = (1 - \lambda)y + \lambda z$$

for some $y, z \in S$ and $0 < \lambda < 1$, it follows that y = z.

- Suppose S is a convex set in a vector space V.
- A point x ∈ S is said to be an *extreme point* of S if, whenever we have

$$x = (1 - \lambda)y + \lambda z$$

for some $y, z \in S$ and $0 < \lambda < 1$, it follows that y = z.

• In other words, x is extreme for S if it is not an interior point of any line segment contained in S.

- Suppose S is a convex set in a vector space V.
- A point x ∈ S is said to be an *extreme point* of S if, whenever we have

$$x = (1 - \lambda)y + \lambda z$$

for some $y, z \in S$ and $0 < \lambda < 1$, it follows that y = z.

- In other words, x is extreme for S if it is not an interior point of any line segment contained in S.
- A prototypical example: If P is a convex polyhedron in \mathbb{R}^n , then the extreme points of P are precisely its vertices.

• Immediate observations:

• Immediate observations:

• (1) A point $x \in S$ is extreme for S iff, whenever we have

$$x=\frac{1}{2}(y+z)$$

for some $y, z \in S$, it follows that y = z.

• Immediate observations:

• (1) A point $x \in S$ is extreme for S iff, whenever we have

$$x=\frac{1}{2}(y+z)$$

for some $y, z \in S$, it follows that y = z.

(2) Also, a point x ∈ S is extreme for S iff the only vector v ∈ V satisfying

$$x + v \in S$$
 and $x - v \in S$

is v = 0.

• The most famous result about extreme points is:

Theorem (Krein–Milman)

If S is a compact convex set in a locally convex space, then S is the closed convex hull of its extreme points.

• The most famous result about extreme points is:

Theorem (Krein–Milman)

If S is a compact convex set in a locally convex space, then S is the closed convex hull of its extreme points.

As a consequence, we mention the following

Corollary

Let X be a Banach space. Then

$$\operatorname{ball}(X^*) := \{\varphi \in X^* : \, \|\varphi\|_{X^*} \leq 1\}$$

(i.e., the unit ball of the dual space X^*) is the weak-star closure of the convex hull of its extreme points. In particular, ball (X^*) has extreme points.

• Yet another important result is the Choquet(-Bishop-de Leeuw) theorem.

Theorem (Choquet)

Suppose S is a compact convex subset of a normed (or, more generally, locally convex) space V, and let E be the set of extreme points of S. Then, for each $x \in S$, there exists a probability measure σ supported on E such that

$$x=\int_E y\,d\sigma(y),$$

in the sense that $\varphi(x) = \int_E \varphi(y) \, d\sigma(y)$ for all $\varphi \in V^*$.

• Yet another important result is the Choquet(-Bishop-de Leeuw) theorem.

Theorem (Choquet)

Suppose S is a compact convex subset of a normed (or, more generally, locally convex) space V, and let E be the set of extreme points of S. Then, for each $x \in S$, there exists a probability measure σ supported on E such that

$$x=\int_E y\,d\sigma(y),$$

in the sense that $\varphi(x) = \int_E \varphi(y) \, d\sigma(y)$ for all $\varphi \in V^*$.

• The finite-dimensional case ($V = \mathbb{R}^n$) is due to Minkowski; the measures that arise here are finite sums of point masses.

• Given a Banach space $X = (X, \|\cdot\|)$, recall the notation

$${
m ball}(X) := \{x \in X : \|x\| \le 1\}.$$

• Given a Banach space $X = (X, \|\cdot\|)$, recall the notation

$$\text{ball}(X) := \{x \in X : ||x|| \le 1\}.$$

• Now suppose that (Ω, μ) is a measure space and X is a subspace of $L^1 = L^1(\Omega, \mu)$, endowed with the usual norm $||f||_1 := \int_{\Omega} |f| d\mu$.

Theorem

Let $f \in X$ be a function with $||f||_1 = 1$ satisfying $f \neq 0$ a.e. on Ω . TFAE: (i) f is an extreme point of ball (X). (ii) Whenever $h \in L^{\infty}_{\mathbb{R}}$ and $fh \in X$, we have h = const a.e. on Ω .

Here $L^{\infty}_{\mathbb{R}}$ is the set of real-valued functions in $L^{\infty} = L^{\infty}(\Omega, \mu)$.

(ii') Whenever $h \in L^{\infty}_{\mathbb{R}}$ and $fh \in X$, we have h = const a.e. on the set $\{x \in \Omega : f(x) \neq 0\}$.

Proof. (i) ⇒ (ii). Suppose that (ii) fails, so that there exists a nonconstant function h ∈ L_R[∞] with fh ∈ X.

- Proof. (i) ⇒ (ii). Suppose that (ii) fails, so that there exists a nonconstant function h ∈ L_R[∞] with fh ∈ X.
- Letting $\alpha := \int |f|h$ and $u := h \alpha$, we see that $u \in L^{\infty}_{\mathbb{R}}$, $u \neq \text{const}$, $fu \in X$, and $\int |f|u = 0$.

- Proof. (i) ⇒ (ii). Suppose that (ii) fails, so that there exists a nonconstant function h ∈ L_R[∞] with fh ∈ X.
- Letting $\alpha := \int |f|h$ and $u := h \alpha$, we see that $u \in L^{\infty}_{\mathbb{R}}$, $u \neq \text{const}$, $fu \in X$, and $\int |f|u = 0$.
- We may assume, in addition, that $||u||_{\infty} \leq 1$ (otherwise, replace u by εu , where $\varepsilon > 0$ is suitably small).

- Proof. (i) ⇒ (ii). Suppose that (ii) fails, so that there exists a nonconstant function h ∈ L_R[∞] with fh ∈ X.
- Letting $\alpha := \int |f|h$ and $u := h \alpha$, we see that $u \in L^{\infty}_{\mathbb{R}}$, $u \neq \text{const}$, $fu \in X$, and $\int |f|u = 0$.
- We may assume, in addition, that $||u||_{\infty} \leq 1$ (otherwise, replace u by εu , where $\varepsilon > 0$ is suitably small).
- It follows that the functions f₊ := f(1 + u) and f₋ := f(1 u) are distinct elements of X. (Indeed, fu is non-null, since u is non-null.)

• Moreover, f_+ and f_- are in ball(X), because $1 \pm u \ge 0$ and so

$$\|f_{\pm}\|_{1} := \int |f|(1 \pm u) = \int |f| = 1.$$

• Moreover, f_+ and f_- are in ball (X), because $1 \pm u \ge 0$ and so

$$||f_{\pm}||_1 := \int |f|(1 \pm u) = \int |f| = 1.$$

• The identity

$$f=\frac{1}{2}\left(f_{+}+f_{-}\right)$$

now shows that f is not an extreme point of ball(X).

(ii) ⇒ (i). Suppose that ||f + g||₁ ≤ 1 and ||f - g||₁ ≤ 1 for some g ∈ X. Assuming (ii), we want to prove that g = 0.

Subspaces of L¹

- (ii) ⇒ (i). Suppose that ||f + g||₁ ≤ 1 and ||f g||₁ ≤ 1 for some g ∈ X. Assuming (ii), we want to prove that g = 0.
- Since $\|f\|_1 = 1$, we actually have $\|f + g\|_1 = \|f g\|_1 = 1$, and so

$$\int \left(|f+g|+|f-g| \right) d\mu = 2.$$

Subspaces of L¹

- (ii) ⇒ (i). Suppose that ||f + g||₁ ≤ 1 and ||f g||₁ ≤ 1 for some g ∈ X. Assuming (ii), we want to prove that g = 0.
- Since $\|f\|_1 = 1$, we actually have $\|f + g\|_1 = \|f g\|_1 = 1$, and so

$$\int \left(|f+g|+|f-g| \right) d\mu = 2.$$

• Setting h:=g/f and $d\nu:=|f|d\mu$, we rewrite this as

$$\int (|1+h|+|1-h|) \, d\nu = 2.$$

Subspaces of L¹

- (ii) ⇒ (i). Suppose that ||f + g||₁ ≤ 1 and ||f g||₁ ≤ 1 for some g ∈ X. Assuming (ii), we want to prove that g = 0.
- Since $\|f\|_1 = 1$, we actually have $\|f + g\|_1 = \|f g\|_1 = 1$, and so

$$\int \left(|f+g|+|f-g| \right) d\mu = 2.$$

• Setting h := g/f and $d\nu := |f|d\mu$, we rewrite this as

$$\int (|1+h|+|1-h|) \, d\nu = 2.$$

• But $|1 + h| + |1 - h| \ge 2$ a.e. Since $\nu(\Omega) = ||f||_1 = 1$, it follows that |1 + h| + |1 - h| = 2 ν -a.e. (and hence μ -a.e.).

• This in turn implies that h is real-valued, with values in [-1, 1]. In particular, $h \in L^{\infty}_{\mathbb{R}}$.

- This in turn implies that h is real-valued, with values in [-1, 1]. In particular, $h \in L^{\infty}_{\mathbb{R}}$.
- Now, since fh(= g) ∈ X, condition (ii) tells us that h = const a.e. Moreover, h ≡ c for some c ∈ [-1,1].

- This in turn implies that h is real-valued, with values in [-1, 1]. In particular, $h \in L^{\infty}_{\mathbb{R}}$.
- Now, since fh(= g) ∈ X, condition (ii) tells us that h = const a.e. Moreover, h ≡ c for some c ∈ [-1,1].
- Thus, g = cf (with this c) and the equality $||f + g||_1 = 1$ yields

$$(1+c)||f||_1 = 1;$$

since $||f||_1 = 1$, this implies that c = 0.

- This in turn implies that h is real-valued, with values in [-1, 1]. In particular, $h \in L^{\infty}_{\mathbb{R}}$.
- Now, since fh(= g) ∈ X, condition (ii) tells us that h = const a.e. Moreover, h ≡ c for some c ∈ [-1,1].

• Thus, g = cf (with this c) and the equality $||f + g||_1 = 1$ yields

$$(1+c)\|f\|_1 = 1;$$

since $||f||_1 = 1$, this implies that c = 0.

• We finally conclude that g = 0, so f is extreme.

- This in turn implies that h is real-valued, with values in [-1, 1]. In particular, $h \in L^{\infty}_{\mathbb{R}}$.
- Now, since fh(= g) ∈ X, condition (ii) tells us that h = const a.e. Moreover, h ≡ c for some c ∈ [-1,1].
- Thus, g = cf (with this c) and the equality $||f + g||_1 = 1$ yields

$$(1+c)||f||_1 = 1;$$

since $||f||_1 = 1$, this implies that c = 0.

- We finally conclude that g = 0, so f is extreme.
- **Corollary.** If *μ* is atomless, then ball (*L*¹(Ω, *μ*)) has no extreme points.

• In what follows, we deal with subspaces of $L^1 := L^1(\mathbb{T}, m)$, where

$$\mathbb{T}:=\{\zeta\in\mathbb{C}:|\zeta|=1\}$$

and *m* is normalized Lebesgue measure on \mathbb{T} .

• In what follows, we deal with subspaces of $L^1 := L^1(\mathbb{T}, m)$, where

$$\mathbb{T} := \{\zeta \in \mathbb{C} : |\zeta| = 1\}$$

and *m* is normalized Lebesgue measure on \mathbb{T} .

• The norm $\|\cdot\|_1$ is thus given by $\|f\|_1 := \int_{\mathbb{T}} |f(\zeta)| dm(\zeta)$.

• In what follows, we deal with subspaces of $L^1 := L^1(\mathbb{T}, m)$, where

$$\mathbb{T} := \{\zeta \in \mathbb{C} : |\zeta| = 1\}$$

and m is normalized Lebesgue measure on \mathbb{T} .

- The norm $\|\cdot\|_1$ is thus given by $\|f\|_1 := \int_{\mathbb{T}} |f(\zeta)| dm(\zeta)$.
- The *Fourier coefficients* of a function $f \in L^1$ are the numbers

$$\widehat{f}(k) := \int_{\mathbb{T}} \overline{\zeta}^k f(\zeta) \, dm(\zeta), \qquad k \in \mathbb{Z},$$

and the *spectrum* of f is the set

spec
$$f := \{k \in \mathbb{Z} : \widehat{f}(k) \neq 0\}.$$

• The Hardy space H¹ is defined by

$$H^1 := \{ f \in L^1 : \operatorname{spec} f \subset \mathbb{Z}_+ \},\$$

where $\mathbb{Z}_+ := \{0,1,2,\dots\},$ and equipped with norm $\|\cdot\|_1.$

• The Hardy space H^1 is defined by

$$H^1 := \{ f \in L^1 : \operatorname{spec} f \subset \mathbb{Z}_+ \},\$$

where $\mathbb{Z}_+ := \{0,1,2,\dots\},$ and equipped with norm $\|\cdot\|_1.$

• We may also view elements of *H*¹ as holomorphic functions on the unit disk

$$\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$$

(use the Poisson integral to extend the function from \mathbb{T} to \mathbb{D}).

• The Hardy space H^1 is defined by

$$H^1 := \{ f \in L^1 : \operatorname{spec} f \subset \mathbb{Z}_+ \},\$$

where $\mathbb{Z}_+ := \{0,1,2,\dots\},$ and equipped with norm $\|\cdot\|_1.$

• We may also view elements of *H*¹ as holomorphic functions on the unit disk

$$\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$$

(use the Poisson integral to extend the function from \mathbb{T} to \mathbb{D}).

• By definition, a non-null function $F \in H^1$ is *outer* if

$$\log |F(0)| = \int_{\mathbb{T}} \log |F(\zeta)| \, dm(\zeta).$$

• A function I in $H^{\infty} := H^1 \cap L^{\infty}(\mathbb{T})$ is inner if |I| = 1 a.e. on \mathbb{T} .

- A function I in $H^{\infty} := H^1 \cap L^{\infty}(\mathbb{T})$ is inner if |I| = 1 a.e. on \mathbb{T} .
- The general form of a function $f \in H^1$, $f \not\equiv 0$, is given by f = IF, where I is inner and F is outer.

• A function I in $H^{\infty} := H^1 \cap L^{\infty}(\mathbb{T})$ is inner if |I| = 1 a.e. on \mathbb{T} .

- The general form of a function $f \in H^1$, $f \not\equiv 0$, is given by f = IF, where I is inner and F is outer.
- For subspaces of H^1 , we have the following criterion.

Theorem

Let X be a subspace of H^1 . Suppose $f \in X$ is a function with $||f||_1 = 1$ whose canonical factorization is f = IF, with I inner and F outer. TFAE: (i) f is an extreme point of ball(X). (ii) Whenever $h \in L^{\infty}_{\mathbb{R}} = L^{\infty}_{\mathbb{R}}(\mathbb{T})$ and $fh \in X$, we have h = const a.e. on \mathbb{T} . (iii) Whenever $G \in H^{\infty}$ is a function satisfying $G/I \in L^{\infty}_{\mathbb{R}}$ and $FG \in X$, we have G = cI for some $c \in \mathbb{R}$.

• **Proof.** We already know that (i) \iff (ii).

- **Proof.** We already know that (i) \iff (ii).
- (ii) \implies (iii). If (iii) fails, then there is $G \in H^{\infty}$ (other than a constant multiple of I) such that $G/I \in L^{\infty}_{\mathbb{R}}$ and $FG \in X$.

- **Proof.** We already know that (i) \iff (ii).
- (ii) \implies (iii). If (iii) fails, then there is $G \in H^{\infty}$ (other than a constant multiple of I) such that $G/I \in L^{\infty}_{\mathbb{R}}$ and $FG \in X$.
- Put h := G/I. Note that h ∈ L[∞]_ℝ, h ≠ const and fh = FG ∈ X, so that (ii) fails.

- **Proof.** We already know that (i) \iff (ii).
- (ii) \implies (iii). If (iii) fails, then there is $G \in H^{\infty}$ (other than a constant multiple of I) such that $G/I \in L^{\infty}_{\mathbb{R}}$ and $FG \in X$.
- Put h := G/I. Note that $h \in L^{\infty}_{\mathbb{R}}$, $h \neq \text{const}$ and $fh = FG \in X$, so that (ii) fails.
- (iii) ⇒ (ii). If (ii) fails, then we can find an h ∈ L[∞]_R, h ≠ const, with fh(=: g) ∈ X. Now put G := g/F. Because g and F are both in H¹, while F is outer, it follows that G ∈ N⁺ (where N⁺ is the Smirnov class).

- **Proof.** We already know that (i) \iff (ii).
- (ii) \implies (iii). If (iii) fails, then there is $G \in H^{\infty}$ (other than a constant multiple of I) such that $G/I \in L^{\infty}_{\mathbb{R}}$ and $FG \in X$.
- Put h := G/I. Note that $h \in L^{\infty}_{\mathbb{R}}$, $h \neq \text{const}$ and $fh = FG \in X$, so that (ii) fails.
- (iii) \implies (ii). If (ii) fails, then we can find an $h \in L^{\infty}_{\mathbb{R}}$, $h \neq \text{const}$, with $fh(=:g) \in X$. Now put G := g/F. Because g and F are both in H^1 , while F is outer, it follows that $G \in N^+$ (where N^+ is the Smirnov class).
- Furthermore,

$$\frac{G}{I} = \frac{g}{IF} = \frac{g}{f} = h,$$

whence $G = Ih \in L^{\infty}$. Therefore, $G \in N^+ \cap L^{\infty} = H^{\infty}$.

• Also, $FG = g \in X$. This means that (iii) fails.

- Also, $FG = g \in X$. This means that (iii) fails.
- As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw–Rudin, 1958)

A function $f \in H^1$ with $||f||_1 = 1$ is an extreme point of $ball(H^1)$ if and only if it is outer.

- Also, $FG = g \in X$. This means that (iii) fails.
- As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw-Rudin, 1958)

A function $f \in H^1$ with $||f||_1 = 1$ is an extreme point of $ball(H^1)$ if and only if it is outer.

• **Proof.** If f = IF is outer, then $I \equiv 1$ and the only functions $G \in H^{\infty}$ satisfying $G/I(=G) \in L^{\infty}_{\mathbb{R}}$ are the constants. Thus, (iii) holds with $X = H^1$.

- Also, $FG = g \in X$. This means that (iii) fails.
- As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw-Rudin, 1958)

A function $f \in H^1$ with $||f||_1 = 1$ is an extreme point of $ball(H^1)$ if and only if it is outer.

- **Proof.** If f = IF is outer, then $I \equiv 1$ and the only functions $G \in H^{\infty}$ satisfying $G/I(=G) \in L^{\infty}_{\mathbb{R}}$ are the constants. Thus, (iii) holds with $X = H^1$.
- Conversely, if f = IF is non-outer, then put $G = 1 + I^2 (\in H^{\infty})$. Note that $G/I = \overline{I} + I$, which is a nonconstant function in $L^{\infty}_{\mathbb{R}}$, while $FG \in H^1$. Thus, (iii) fails for $X = H^1$.

• Now let $\varphi \in L^{\infty}(\mathbb{T})$. For $f \in H^1$, put

$$(T_{\varphi}f)(z) := \int_{\mathbb{T}} rac{arphi(\zeta)f(\zeta)}{1-zar{\zeta}} dm(\zeta), \qquad z\in\mathbb{D}.$$

• Now let $\varphi \in L^{\infty}(\mathbb{T})$. For $f \in H^1$, put

$$(T_{\varphi}f)(z) := \int_{\mathbb{T}} rac{\varphi(\zeta)f(\zeta)}{1-z\overline{\zeta}} dm(\zeta), \qquad z \in \mathbb{D}.$$

• Assume that the kernel

$$\mathcal{K}_1(arphi):=\{f\in H^1:\ T_arphi f=0\}$$

of the (Toeplitz) operator T_{φ} is nontrivial.

• Now let $\varphi \in L^{\infty}(\mathbb{T})$. For $f \in H^1$, put

$$(T_{\varphi}f)(z) := \int_{\mathbb{T}} rac{\varphi(\zeta)f(\zeta)}{1-z\overline{\zeta}} dm(\zeta), \qquad z \in \mathbb{D}.$$

$$K_1(\varphi) := \{f \in H^1: T_{\varphi}f = 0\}$$

of the (Toeplitz) operator T_{φ} is nontrivial.

Note also that

$$K_1(\varphi) := \{ f \in H^1 : \overline{z\varphi f} \in H^1 \}.$$

• We mention two cases when $K_1(\varphi) \neq \{0\}$. First, this happens if $\varphi \equiv 0$, in which case $K_1(\varphi) = H^1$.

- We mention two cases when $K_1(\varphi) \neq \{0\}$. First, this happens if $\varphi \equiv 0$, in which case $K_1(\varphi) = H^1$.
- Secondly, this happens if $\varphi = \overline{\theta}$, where θ is an inner function; in this case, $K_1(\varphi)$ becomes the *model subspace*

$$K^1_{\theta} := H^1 \cap \overline{z} \theta \overline{H^1}$$

associated with θ .

- We mention two cases when $K_1(\varphi) \neq \{0\}$. First, this happens if $\varphi \equiv 0$, in which case $K_1(\varphi) = H^1$.
- Secondly, this happens if $\varphi = \overline{\theta}$, where θ is an inner function; in this case, $K_1(\varphi)$ becomes the *model subspace*

$$K^1_{ heta} := H^1 \cap \overline{z} \overline{ heta} \overline{H^1}$$

associated with θ .

• What are the extreme points of $ball(K_1(\varphi))$?

Theorem B (K.D., last millennium)

For a function $f \in K_1(\varphi)$ with $||f||_1 = 1$, TFAE: (i) f is an extreme point of $\operatorname{ball}(K_1(\varphi))$. (ii) The inner factors of f and \tilde{f} are relatively prime (i.e., they have no nonconstant common inner divisor).

Theorem B (K.D., last millennium)

For a function $f \in K_1(\varphi)$ with $||f||_1 = 1$, TFAE: (i) f is an extreme point of ball $(K_1(\varphi))$. (ii) The inner factors of f and \tilde{f} are relatively prime (i.e., they have no nonconstant common inner divisor).

Proof. (i) ⇒ (ii). Suppose f is extreme, and let u be the GCD of I_f and I_f.

Theorem B (K.D., last millennium)

For a function $f \in K_1(\varphi)$ with $||f||_1 = 1$, TFAE: (i) f is an extreme point of $\text{ball}(K_1(\varphi))$. (ii) The inner factors of f and \tilde{f} are relatively prime (i.e., they have no nonconstant common inner divisor).

Proof. (i) ⇒ (ii). Suppose f is extreme, and let u be the GCD of I_f and I_f.

• Then
$$fu \in K_1(\varphi)$$
, since $\tilde{fu} = \overline{z\varphi fu} = \tilde{f} \ \overline{u} \in H^1$.

Theorem B (K.D., last millennium)

For a function $f \in K_1(\varphi)$ with $||f||_1 = 1$, TFAE: (i) f is an extreme point of $\text{ball}(K_1(\varphi))$. (ii) The inner factors of f and \tilde{f} are relatively prime (i.e., they have no nonconstant common inner divisor).

- Proof. (i) ⇒ (ii). Suppose f is extreme, and let u be the GCD of I_f and I_f.
- Then $fu \in K_1(\varphi)$, since $\tilde{fu} = \overline{z\varphi fu} = \tilde{f} \ \overline{u} \in H^1$.
- Similarly, $f\overline{u} \in K_1(\varphi)$, since $f\overline{u} \in H^1$ and $\tilde{f}\overline{u} = \tilde{f}u \in H^1$.

• Thus, $h := 2\Re u = u + \overline{u}$ is in $L^{\infty}_{\mathbb{R}}$ and $fh \in K_1(\varphi)$. Since f is extreme, it follows that h = const and hence u = const.

- Thus, $h := 2\Re u = u + \overline{u}$ is in $L^{\infty}_{\mathbb{R}}$ and $fh \in K_1(\varphi)$. Since f is extreme, it follows that h = const and hence u = const.
- (ii) \Longrightarrow (i). Suppose that $h \in L^{\infty}_{\mathbb{R}}$ and $fh =: g \in K_1(\varphi)$. Then

$$h=rac{g}{f}=rac{\overline{g}}{\overline{f}}=rac{\widetilde{g}}{\widetilde{f}},$$

whence
$$\tilde{f}g = f\tilde{g}$$
.

- Thus, $h := 2\Re u = u + \overline{u}$ is in $L^{\infty}_{\mathbb{R}}$ and $fh \in K_1(\varphi)$. Since f is extreme, it follows that h = const and hence u = const.
- (ii) \Longrightarrow (i). Suppose that $h \in L^{\infty}_{\mathbb{R}}$ and $fh =: g \in K_1(\varphi)$. Then

$$h=rac{g}{f}=rac{\overline{g}}{\overline{f}}=rac{\widetilde{g}}{\widetilde{f}},$$

whence $\tilde{f}g = f\tilde{g}$.

• A similar identity holds for the inner factors: $I_{\tilde{f}}I_g = I_f I_{\tilde{g}}$.

- Thus, $h := 2\Re u = u + \overline{u}$ is in $L^{\infty}_{\mathbb{R}}$ and $fh \in K_1(\varphi)$. Since f is extreme, it follows that h = const and hence u = const.
- (ii) \Longrightarrow (i). Suppose that $h \in L^{\infty}_{\mathbb{R}}$ and $fh =: g \in K_1(\varphi)$. Then

$$h=rac{g}{f}=rac{\overline{g}}{\overline{f}}=rac{\widetilde{g}}{\widetilde{f}},$$

whence $\tilde{f}g = f\tilde{g}$.

- A similar identity holds for the inner factors: $I_{\tilde{f}}I_g = I_f I_{\tilde{g}}$.
- Since I_f and $I_{\tilde{f}}$ are relatively prime, it follows that I_f divides I_g , i.e., $I_g/I_f \in H^{\infty}$.

- Thus, $h := 2\Re u = u + \overline{u}$ is in $L^{\infty}_{\mathbb{R}}$ and $fh \in K_1(\varphi)$. Since f is extreme, it follows that h = const and hence u = const.
- (ii) \Longrightarrow (i). Suppose that $h \in L^{\infty}_{\mathbb{R}}$ and $fh =: g \in K_1(\varphi)$. Then

$$h = rac{g}{f} = rac{\overline{g}}{\overline{f}} = rac{\widetilde{g}}{\widetilde{f}},$$

whence $\tilde{f}g = f\tilde{g}$.

- A similar identity holds for the inner factors: $I_{\tilde{f}}I_g = I_f I_{\tilde{g}}$.
- Since I_f and $I_{\tilde{f}}$ are relatively prime, it follows that I_f divides I_g , i.e., $I_g/I_f \in H^{\infty}$.
- Since h = g/f, we now deduce that h ∈ N⁺ ∩ L[∞] = H[∞]. Because h is real-valued, it must be constant.

• Corollary 1. Every unit-norm function in $K_1(\varphi)$ is writable as $f = \frac{1}{2}(f_1 + f_2)$, where f_1 and f_2 are extreme points of ball $(K_1(\varphi))$.

- Corollary 1. Every unit-norm function in $K_1(\varphi)$ is writable as $f = \frac{1}{2}(f_1 + f_2)$, where f_1 and f_2 are extreme points of ball $(K_1(\varphi))$.
- Corollary 2. If φ ≠ 0, then the extreme points of ball(K₁(φ)) are dense on the unit sphere of K₁(φ).

Last slide

To be continued...