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Introduction

@ Suppose S is a convex set in a vector space V.
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Introduction

@ Suppose S is a convex set in a vector space V.

@ A point x € S is said to be an extreme point of S if, whenever we

have
x=(1-XNy+ Az

for some y,z € S and 0 < A < 1, it follows that y = z.
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@ Suppose S is a convex set in a vector space V.

@ A point x € S is said to be an extreme point of S if, whenever we
have

x=(1-XNy+ Az
for some y,z € S and 0 < A < 1, it follows that y = z.

@ In other words, x is extreme for S if it is not an interior point of any
line segment contained in S.
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Introduction

@ Suppose S is a convex set in a vector space V.
@ A point x € S is said to be an extreme point of S if, whenever we
have
x=(1-XNy+ Az
for some y,z € S and 0 < A < 1, it follows that y = z.
@ In other words, x is extreme for S if it is not an interior point of any
line segment contained in S.

@ A prototypical example: If P is a convex polyhedron in R”, then the
extreme points of P are precisely its vertices.
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Introduction

@ Immediate observations:
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Introduction

@ Immediate observations:

@ (1) A point x € S is extreme for S iff, whenever we have

1
x:E(y—kz)

for some y,z € S, it follows that y = z.
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Introduction

@ Immediate observations:

@ (1) A point x € S is extreme for S iff, whenever we have

1
X = E(y + 2)
for some y,z € S, it follows that y = z.

@ (2) Also, a point x € S is extreme for S iff the only vector v € V
satisfying
x+veS and x—veS

isv =20.

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 25/11/2021 3/21



Introduction

@ The most famous result about extreme points is:

Theorem (Krein—Milman)

If S is a compact convex set in a locally convex space, then S is the closed
convex hull of its extreme points.
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Introduction

@ The most famous result about extreme points is:

Theorem (Krein—Milman)

If S is a compact convex set in a locally convex space, then S is the closed
convex hull of its extreme points.

@ As a consequence, we mention the following

Corollary

Let X be a Banach space. Then
ball (X*) := {p € X" : |lo|[x~ < 1}

(i.e., the unit ball of the dual space X*) is the weak-star closure of the
convex hull of its extreme points. In particular, ball (X*) has extreme
points.
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Introduction

@ Yet another important result is the Choquet(—Bishop—de Leeuw)
theorem.

Theorem (Choquet)

Suppose S is a compact convex subset of a normed (or, more generally,
locally convex) space V, and let E be the set of extreme points of S.
Then, for each x € S, there exists a probability measure o supported on E

such that
x= [ ydoty).
E

in the sense that o(x) = [¢¢(y)dao(y) for all p € V*.
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Introduction

@ Yet another important result is the Choquet(—Bishop—de Leeuw)
theorem.

Theorem (Choquet)

Suppose S is a compact convex subset of a normed (or, more generally,
locally convex) space V, and let E be the set of extreme points of S.
Then, for each x € S, there exists a probability measure o supported on E

such that
x= [ ydoty).
E

in the sense that o(x) = [¢¢(y)dao(y) for all p € V*.

@ The finite-dimensional case (V = R") is due to Minkowski; the
measures that arise here are finite sums of point masses.
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Subspaces of !

@ Given a Banach space X = (X, || - ||), recall the notation

ball (X) := {x € X : |x]| <1}.
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Subspaces of !

@ Given a Banach space X = (X, || - ||), recall the notation

ball (X) := {x € X : |x]| <1}.

@ Now suppose that (2, ;1) is a measure space and X is a subspace of
L' = [}(, p), endowed with the usual norm ||f||y := [ |f|dp.

Let f € X be a function with ||f||1 = 1 satisfying f # 0 a.e. on Q. TFAE:
(i) f is an extreme point of ball (X).
(ii) Whenever h € Ly and fh € X, we have h = const a.e. on .

Here LY is the set of real-valued functions in L> = L*(Q, p).
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Subspaces of !

o Remark. We may drop the assumption that f # 0 a.e. and replace
condition (ii) by the following:
(ii") Whenever h € Lg and fh € X, we have h = const a.e. on the
set {x € Q: f(x) # 0}.
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Subspaces of !

o Remark. We may drop the assumption that f # 0 a.e. and replace
condition (ii) by the following:
(ii") Whenever h € Lg and fh € X, we have h = const a.e. on the
set {x € Q: f(x) # 0}.

@ Proof. (i) = (ii). Suppose that (ii) fails, so that there exists a
nonconstant function h € Ly’ with fh € X.
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Subspaces of !

o Remark. We may drop the assumption that f # 0 a.e. and replace
condition (ii) by the following:
(ii") Whenever h € Lg and fh € X, we have h = const a.e. on the
set {x € Q: f(x) # 0}.

@ Proof. (i) = (ii). Suppose that (ii) fails, so that there exists a
nonconstant function h € Ly’ with fh € X.

o Letting o := [ |f|h and u:= h — «, we see that u € L, u # const,
fue X, and [ |flu=0.

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 25/11/2021 7/21



Subspaces of !

o Remark. We may drop the assumption that f # 0 a.e. and replace
condition (ii) by the following:
(ii") Whenever h € Lg and fh € X, we have h = const a.e. on the
set {x € Q: f(x) # 0}.

@ Proof. (i) = (ii). Suppose that (ii) fails, so that there exists a
nonconstant function h € Ly’ with fh € X.

o Letting o := [ |f|h and u:= h — «, we see that u € L, u # const,
fue X, and [ |flu=0.

@ We may assume, in addition, that ||u||oc < 1 (otherwise, replace u by
eu, where € > 0 is suitably small).
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Subspaces of !

o Remark. We may drop the assumption that f # 0 a.e. and replace
condition (ii) by the following:
(ii") Whenever h € Lg and fh € X, we have h = const a.e. on the
set {x € Q: f(x) # 0}.

@ Proof. (i) = (ii). Suppose that (ii) fails, so that there exists a
nonconstant function h € Ly’ with fh € X.

o Letting o := [ |f|h and u:= h — «, we see that u € L, u # const,
fue X, and [ |flu=0.

@ We may assume, in addition, that ||u||oc < 1 (otherwise, replace u by
eu, where € > 0 is suitably small).

o |t follows that the functions i := f(1+ u) and f_ := f(1 — u) are
distinct elements of X. (Indeed, fu is non-null, since u is non-null.)
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Subspaces of !

@ Moreover, fy and f_ are in ball (X), because 1+ u > 0 and so

el = [ 1A= 0) = [11=1
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Subspaces of !

@ Moreover, fy and f_ are in ball (X), because 1+ u > 0 and so

el = [ 1A= 0) = [11=1

1

@ The identity

now shows that f is not an extreme point of ball (X).
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Subspaces of !

@ (ii) = (i). Suppose that ||f + g||1 <1 and ||f — g][1 < 1 for some
g € X. Assuming (ii), we want to prove that g = 0.
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Subspaces of !

@ (ii) = (i). Suppose that ||f + g||1 <1 and ||f — g][1 < 1 for some
g € X. Assuming (ii), we want to prove that g = 0.

@ Since ||f|l1 = 1, we actually have ||[f + g|l1 = ||f — g||l1 = 1, and so

/(|f+g\+rf—g|)du=z
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Subspaces of !

@ (ii) = (i). Suppose that ||f + g||1 <1 and ||f — g][1 < 1 for some
g € X. Assuming (ii), we want to prove that g = 0.

@ Since ||f|l1 = 1, we actually have ||[f + g|l1 = ||f — g||l1 = 1, and so

/(|f+g\+rf—g|)du=z

o Setting h:= g/f and dv := |f|dyu, we rewrite this as

/(\1+h\+]1—h[)du:2.
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Subspaces of !

@ (ii) = (i). Suppose that ||f + g||1 <1 and ||f — g][1 < 1 for some
g € X. Assuming (ii), we want to prove that g = 0.

@ Since ||f|l1 = 1, we actually have ||[f + g|l1 = ||f — g||l1 = 1, and so

/(|f+g\+rf—g|)du=z

o Setting h:= g/f and dv := |f|dyu, we rewrite this as

/(\1+h\+]1—h[)du:2.

@ But |1+ h|+ |1 — h| > 2 a.e. Since v(2) = ||f|l1 =1, it follows that
|1+ h|+|1—h| =2 v-a.e. (and hence p-a.e.).
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Subspaces of !

@ This in turn implies that h is real-valued, with values in [—1,1]. In
particular, h € Lg’.
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Subspaces of !

@ This in turn implies that h is real-valued, with values in [—1,1]. In
particular, h € Lg’.

@ Now, since fh(= g) € X, condition (ii) tells us that h = const a.e.
Moreover, h = ¢ for some ¢ € [—1,1].
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Subspaces of !

@ This in turn implies that h is real-valued, with values in [—1,1]. In
particular, h € Lg’.

@ Now, since fh(= g) € X, condition (ii) tells us that h = const a.e.
Moreover, h = ¢ for some ¢ € [—1,1].

@ Thus, g = cf (with this ¢) and the equality ||f + g||1 = 1 yields
T+l =1

since ||f]l1 = 1, this implies that ¢ = 0.
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Subspaces of !

@ This in turn implies that h is real-valued, with values in [—1,1]. In
particular, h € Lg°.

@ Now, since fh(= g) € X, condition (ii) tells us that h = const a.e.
Moreover, h = ¢ for some ¢ € [—1,1].

@ Thus, g = cf (with this ¢) and the equality ||f + g||1 = 1 yields
T+l =1

since ||f]l1 = 1, this implies that ¢ = 0.

@ We finally conclude that g =0, so f is extreme. O
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Subspaces of !

@ This in turn implies that h is real-valued, with values in [—1,1]. In
particular, h € Lg°.

@ Now, since fh(= g) € X, condition (ii) tells us that h = const a.e.
Moreover, h = ¢ for some ¢ € [—1,1].

@ Thus, g = cf (with this ¢) and the equality ||f + g||1 = 1 yields
T+l =1

since ||f]l1 = 1, this implies that ¢ = 0.
@ We finally conclude that g =0, so f is extreme. O

e Corollary. If i is atomless, then ball (L*(2, 1)) has no extreme
points.
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H! and its subspaces

@ In what follows, we deal with subspaces of L := L}(T, m), where

T:={CeC:[¢|=1}

and m is normalized Lebesgue measure on T.
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H! and its subspaces

@ In what follows, we deal with subspaces of L := L}(T, m), where

T:={CeC:[¢|=1}

and m is normalized Lebesgue measure on T.
@ The norm || - ||1 is thus given by ||f[|1 := [ |[F(¢)| dm(C).
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H! and its subspaces

@ In what follows, we deal with subspaces of L := L}(T, m), where

T:={CeC:[¢|=1}

and m is normalized Lebesgue measure on T.
@ The norm || - ||1 is thus given by ||f[|1 := [ |[F(¢)| dm(C).
e The Fourier coefficients of a function f € L! are the numbers

-~ —k
W)= [ RO a0, ke
and the spectrum of f is the set

spec f = {k € Z: (k) #0}.
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H! and its subspaces

@ The Hardy space H! is defined by
HY:={f e l': specf C Z,},

where Z4 :={0,1,2,...}, and equipped with norm || - ||1.
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H! and its subspaces

@ The Hardy space H! is defined by
HY:={f e l': specf C Z,},

where Z4 :={0,1,2,...}, and equipped with norm || - ||1.

@ We may also view elements of H' as holomorphic functions on the
unit disk

D:={zeC:|z| <1}

(use the Poisson integral to extend the function from T to D).
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H! and its subspaces

@ The Hardy space H! is defined by
HY:={f e l': specf C Z,},

where Z4 :={0,1,2,...}, and equipped with norm || - ||1.

@ We may also view elements of H' as holomorphic functions on the
unit disk

D:={zeC:|z| <1}
(use the Poisson integral to extend the function from T to D).

@ By definition, a non-null function F € H' is outer if

log | F(0)] = /T log |F(€)] dm(C).
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H! and its subspaces

e A function I in H® := H1 N L>°(T) is innerif || =1 a.e. on T.
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H! and its subspaces

e A function I in H® := H1 N L>°(T) is innerif || =1 a.e. on T.
@ The general form of a function f € H, f # 0, is given by f = IF,
where [ is inner and F is outer.
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H! and its subspaces

e A function I in H® := H1 N L>°(T) is innerif || =1 a.e. on T.
@ The general form of a function f € HY f %0, is given by f = IF,
where [ is inner and F is outer.

@ For subspaces of H!, we have the following criterion.

Let X be a subspace of H. Suppose f € X is a function with ||f||; =1
whose canonical factorization is f = IF, with | inner and F outer. TFAE:
(i) f is an extreme point of ball(X).

(ii) Whenever h € Ly = L°(T) and fh € X, we have h = const a.e. on T.
(iii) Whenever G € H* is a function satisfying G/I € L and FG € X,
we have G = cl for some c € R.
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H! and its subspaces

@ Proof. We already know that (i) <= (ii).
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H! and its subspaces

@ Proof. We already know that (i) <= (ii).
o (ii) = (iii). If (iii) fails, then there is G € H*> (other than a
constant multiple of /) such that G/I € Lg° and FG € X.
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H! and its subspaces

@ Proof. We already know that (i) <= (ii).

o (ii) = (iii). If (iii) fails, then there is G € H*> (other than a
constant multiple of /) such that G/I € Lg° and FG € X.

@ Put h:= G/I. Note that h € LY®, h # const and fh = FG € X, so
that (ii) fails.
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H! and its subspaces

@ Proof. We already know that (i) <= (ii).

o (ii) = (iii). If (iii) fails, then there is G € H*> (other than a
constant multiple of /) such that G/I € Lg° and FG € X.

@ Put h:= G/I. Note that h € LY®, h # const and fh = FG € X, so
that (ii) fails.

@ (iii) = (ii). If (ii) fails, then we can find an h € Lg°, h # const, with
fh(=: g) € X. Now put G := g/F. Because g and F are both in H?,
while F is outer, it follows that G € Nt (where N is the Smirnov
class).

K. M. Dyakonov (ICREA & UB) Geometry of the unit ball St. Petersburg 25/11/2021 14 /21



H! and its subspaces

@ Proof. We already know that (i) <= (ii).

o (ii) = (iii). If (iii) fails, then there is G € H*> (other than a
constant multiple of /) such that G/I € Lg° and FG € X.

@ Put h:= G/I. Note that h € LY®, h # const and fh = FG € X, so
that (ii) fails.

@ (iii) = (ii). If (ii) fails, then we can find an h € Lg°, h # const, with
fh(=: g) € X. Now put G := g/F. Because g and F are both in H?,
while F is outer, it follows that G € Nt (where N is the Smirnov
class).

@ Furthermore,

G _ g _§_
TTET M

whence G = |h € L™®. Therefore, G € Nt N L>® = H®.
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H! and its subspaces

@ Also, FG = g € X. This means that (iii) fails. O
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H! and its subspaces

@ Also, FG = g € X. This means that (iii) fails. O

@ As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw—Rudin, 1958)

A function f € H* with ||f||1 = 1 is an extreme point of ball(H') if and
only if it is outer.
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H! and its subspaces

@ Also, FG = g € X. This means that (iii) fails. O

@ As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw—Rudin, 1958)

A function f € H with ||f||; = 1 is an extreme point of ball(H') if and
only if it is outer.

@ Proof. If f = IF is outer, then | =1 and the only functions G € H*®
satisfying G/I(= G) € L§® are the constants. Thus, (iii) holds with
X = HL.
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H! and its subspaces

@ Also, FG = g € X. This means that (iii) fails. O

@ As a quick application, we can now prove the following classical result.

Theorem A (de Leeuw—Rudin, 1958)

A function f € H with ||f||; = 1 is an extreme point of ball(H') if and
only if it is outer.

@ Proof. If f = IF is outer, then | =1 and the only functions G € H*®
satisfying G/I(= G) € L§® are the constants. Thus, (iii) holds with
X = H!.

e Conversely, if f = IF is non-outer, then put G = 1 + [?(€ H™).

Note that G// = I + I, which is a nonconstant function in L, while
FG € H. Thus, (iii) fails for X = H. O
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Toeplitz kernels in H*

e Now let ¢ € L°°(T). For f € H, put

(T,)(2) :=/T 1(C_)fz(§)d ), zeD.
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Toeplitz kernels in H*

e Now let ¢ € L°°(T). For f € H, put

(T,)(2) :=/T fz’;(g)d ), zeD.

@ Assume that the kernel
Ki(p) :={f € H': T f =0}

of the (Toeplitz) operator T, is nontrivial.
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Toeplitz kernels in H*

e Now let ¢ € L°°(T). For f € H, put

(T,)(2) :=/T fz’;(g)d ), zeD.

@ Assume that the kernel
Ki(p) :={f € H': T f =0}

of the (Toeplitz) operator T, is nontrivial.

@ Note also that

Ki(p) = {f € H': zpf € H'}.
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Toeplitz kernels in H*

@ We mention two cases when Ki(y) # {0}. First, this happens if
¢ = 0, in which case Ki(p) = H.
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Toeplitz kernels in H*

@ We mention two cases when Ki(y) # {0}. First, this happens if
¢ = 0, in which case Ki(p) = H.

@ Secondly, this happens if ¢ = 6, where @ is an inner function: in this
case, Ki(p) becomes the model subspace

Ky := H* nzoH!

associated with 6.
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Toeplitz kernels in H*

@ We mention two cases when Ki(y) # {0}. First, this happens if
¢ = 0, in which case Ki(p) = H.

@ Secondly, this happens if ¢ = 6, where @ is an inner function: in this
case, Ki(p) becomes the model subspace

Ky := H* nzoH!

associated with 6.
@ What are the extreme points of ball(Ki(y))?
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Toeplitz kernels in H*

o When stating the answer (and below), we write f := zf .

Theorem B (K.D., last millennium)

For a function f € Ki(y) with ||f||1 =1, TFAE:

(i) f is an extreme point of ball(Ki(y)).

(ii) The inner factors of f and f are relatively prime (i.e., they have no
nonconstant common inner divisor).
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Toeplitz kernels in H!

o When stating the answer (and below), we write f := zf .

Theorem B (K.D., last millennium)

For a function f € Ki(y) with ||f||1 =1, TFAE:

(i) f is an extreme point of ball(Ki(y)).

(ii) The inner factors of f and f are relatively prime (i.e., they have no
nonconstant common inner divisor).

@ Proof. (i) = (ii). Suppose f is extreme, and let u be the GCD of /¢
and /.
f
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Toeplitz kernels in H!

o When stating the answer (and below), we write f := zf .

Theorem B (K.D., last millennium)

For a function f € Ki(y) with ||f||1 =1, TFAE:

(i) f is an extreme point of ball(Ki(y)).

(ii) The inner factors of f and f are relatively prime (i.e., they have no
nonconstant common inner divisor).

@ Proof. (i) = (ii). Suppose f is extreme, and let u be the GCD of /¢
and /.
f

e Then fu € Ky(¢p), since fu = zofu = f 1 € H',
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Toeplitz kernels in H!

o When stating the answer (and below), we write f := zf .

Theorem B (K.D., last millennium)

For a function f € Ki(y) with ||f||1 =1, TFAE:

(i) f is an extreme point of ball(Ki(y)).

(ii) The inner factors of f and f are relatively prime (i.e., they have no
nonconstant common inner divisor).

@ Proof. (i) = (ii). Suppose f is extreme, and let u be the GCD of /¢
and /.
f

o Then fu € Ki(yp), since fu = zofu = fu € H.
o Similarly, fii € Ki(¢), since fi € H* and i = fu € H?.
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Toeplitz kernels in H*

@ Thus, h:=2Ru=u+Tisin LY and fh € Ki(yp). Since f is
extreme, it follows that h = const and hence u = const.
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Toeplitz kernels in H*

@ Thus, h:=2Ru=u+Tisin LY and fh € Ki(yp). Since f is
extreme, it follows that h = const and hence u = const.

@ (ii) = (i). Suppose that h € Lg® and fh=: g € Ki(¢). Then

whence fg =fg.
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extreme, it follows that h = const and hence u = const.

@ (ii) = (i). Suppose that h € Lg® and fh=: g € Ki(¢). Then

whence fg =fg.

@ A similar identity holds for the inner factors: I7l; = Irlg.
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Toeplitz kernels in H*

@ Thus, h:=2Ru=u+Tisin LY and fh € Ki(yp). Since f is
extreme, it follows that h = const and hence u = const.

@ (ii) = (i). Suppose that h € Lg® and fh=: g € Ki(¢). Then

whence fg =fg.
@ A similar identity holds for the inner factors: I7l; = Irlg.

@ Since /r and Iz are relatively prime, it follows that /¢ divides /g, i.e.,
lg/lf € H*.
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Toeplitz kernels in H*

@ Thus, h:=2Ru=u+Tisin LY and fh € Ki(yp). Since f is
extreme, it follows that h = const and hence u = const.

@ (ii) = (i). Suppose that h € Lg® and fh=: g € Ki(¢). Then

whence fg =fg.
@ A similar identity holds for the inner factors: I7l; = Irlg.

@ Since /r and Iz are relatively prime, it follows that /¢ divides /g, i.e.,

lg/lf € H*.
@ Since h= g/f, we now deduce that h € N* N L = H>. Because h
is real-valued, it must be constant. 0
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Toeplitz kernels in H*

@ Corollary 1. Every unit-norm function in Ki() is writable as
f = 3(fi + ), where f; and f, are extreme points of ball(K1(¢)).
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Toeplitz kernels in H*

@ Corollary 1. Every unit-norm function in Ki() is writable as
f = 3(fi + ), where f; and f, are extreme points of ball(K1(¢)).

o Corollary 2. If ¢ # 0, then the extreme points of ball(Ki(y)) are
dense on the unit sphere of Ki(yp).
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Last slide
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Last slide

To be continued...
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