Generalized Fishburn numbers, torus knots and quantum modularity

Colin Bijaoui*, Hans Boden*, Beckham Myers[†], Ankush Goswami^{††}, Robert Osburn[‡], Will Rushworth*, Aaron Tronsgard[§], Shaoyang Zhou**

*McMaster, †Harvard, ††RISC, ‡UCD, §Toronto, **Vanderbilt

December 8, 2020

Two goals

Generalized Fishburn numbers and torus knots", JCTA 178 (2021), 105355.

"Quantum modularity of partial theta series with periodic coefficients",
 Forum Math., to appear.

Fishburn numbers

▶ The Fishburn numbers $\xi(n)$ are the coefficients in the expansion of

$$F(1-q) =: \sum_{n\geq 0} \xi(n)q^n = 1 + q + 2q^2 + 5q^3 + 15q^4 + 53q^5 + \cdots$$

where $F(q):=\sum_{n\geq 0}(q)_n$ is the Kontsevich-Zagier "strange" series. Here,

$$(a)_n = (a; q)_n := \prod_{k=1}^n (1 - aq^{k-1}),$$

valid for $n \in \mathbb{N}_0 \cup \{\infty\}$.

ightharpoonup F(q) satisfies a "duality" and is a "modular" object.

• $\xi(n)$'s have many nice combinatorial interpretations (see A022493).

Arithmetic properties of $\xi(n)$

Andrews and Sellers (2016), Guerzhoy, Kent and Rolen (2014), Garvan (2015), Ahlgren and Kim (2015), Straub (2015) studied prime power congruences for $\xi(n)$.

► For example, we have

$$\xi(5^r m - 1) \equiv \xi(5^r m - 2) \equiv 0 \pmod{5^r},$$

$$\xi(7^r m - 1) \equiv 0 \pmod{7^r}$$

and

$$\xi(11^r m - 1) \equiv \xi(11^r m - 2) \equiv \xi(11^r m - 3) \equiv 0 \pmod{11^r}.$$

▶ Our first goal is to generalize $\xi(n)$ using knot theory.

Knots

▶ A *knot* K is an embedding of a circle in \mathbb{R}^3 . For example, the right-handed trefoil knot is given by

▶ We will consider the family of *torus knots* T(p, q):

Knots

Theorem (Reidemeister, 1927)

Let K and K' be two knots with diagrams D and D'. Then K is isotopic to K' in \mathbb{R}^3 if and only if D is related to D' by a sequence of isotopies of \mathbb{R}^2 and the moves RI, RII and RIII given by the following:

The Jones polynomial

▶ The Kauffman bracket $\langle D \rangle$ of D is defined by

$$\left\langle D \sqcup \bigcap \right\rangle = (-A^2 - A^{-2}) \left\langle D \right\rangle$$

$$\left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle = A \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle + A^{-1} \left\langle \left\langle \left\langle \right\rangle \right\rangle \right\rangle$$

$$\left\langle \left\langle \right\rangle \right\rangle = 1.$$

 $ightharpoonup \langle D \rangle$ is invariant under RII and RIII, but not RI as

$$\left\langle \left(\bigodot \right) \right\rangle = -A^{-3} \left\langle \left(\bigcirc \right) \right\rangle$$

The Jones polynomial

▶ The Jones polynomial V(K) = V(K;q) is given by

$$V(K) = \frac{1}{(-A^2 - A^{-2})} (-A)^{-3w(D)} \langle D \rangle \bigg|_{A^2 = g^{-1/2}}$$

where

is the "writhe" of D.

ightharpoonup V(K) is invariant under RI, RII and RIII.

The colored Jones polynomial

▶ The colored Jones polynomial $J_N(K;q)$ is a linear combination of cablings of D using Chebyshev polynomials: $S_1(x) = 1$, $S_2(x) = x$, $S_N(x) = xS_{N-1}(x) - S_{N-2}(x)$.

▶ For example, $S_3(x) = x^2 - 1$. So, we have

$$J_3(4_1;q) = \star \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle - 1$$

▶ The N = 2 case recovers the Jones polynomial.

Expansions

▶ (Habiro, 2008) For any knot K, we have the "cyclotomic expansion"

$$J_N(K;q) = \sum_{n\geq 0} \underbrace{C_n(K;q)}_{\in \mathbb{Z}[q^{\pm 1}]} (q^{1+N})_n (q^{1-N})_n.$$

▶ (Masbaum, 2003) For example,

$$J_N(\mathsf{trefoil}^*;q) = \sum_{n>0} q^n (q^{1+N})_n (q^{1-N})_n.$$

► (Habiro (2000), T. Lê (2003)) The "non-cyclotomic" expansion is

$$J_N(\mathsf{trefoil};q) = q^{1-N} \sum_{n>0} q^{-nN} (q^{1-N})_n.$$

Expansions

▶ (Bryson, Ono, Pitman, Rhoades, 2012, PNAS) We have the "duality"

$$F(\zeta_N^{-1}) = U(-1; \zeta_N)$$

where

$$U(x;q) = \sum_{n\geq 0} (-xq)_n (-x^{-1}q)_n q^{n+1}.$$

For any knot K, we have $J_N(K; q^{-1}) = J_N(K^*; q)$. Thus,

$$F(\zeta_N^{-1}) = J_N(\text{trefoil}; \zeta_N^{-1})\zeta_N = J_N(\text{trefoil}^*; \zeta_N)\zeta_N = U(-1; \zeta_N).$$
Habiro, Lê

• (Hikami, Lovejoy, 2015) U(x;q) is a (mixed) mock modular form (when x is a root of unity $\neq -1$, $\pm i$) as

$$(1-x)U(-x;q) = \frac{q}{(q)_{\infty}} \left(\sum_{r,n>0} - \sum_{r,n<0} \right) (-1)^{n+r} x^{-r} q^{\frac{n(3n+5)}{2} + 2nr + \frac{r(r+3)}{2}}.$$

Our situation

▶ Consider the family of torus knots $T(3,2^t)$, $t \ge 1$. In 2016, Konan proved

$$J_{N}(T(3, 2^{t}); q) = (-1)^{h''(t)} q^{2^{t} - 1 - h'(t) - N} \sum_{n \ge 0} (q^{1 - N})_{n} q^{-Nnm(t)}$$

$$\times \sum_{\substack{3 \sum_{\ell=1}^{m(t) - 1} j_{\ell} \ell \equiv 1 \pmod{m(t)}}} (-q^{-N})^{\sum_{\ell=1}^{m(t) - 1} j_{\ell}} q^{\frac{-s(t) + \sum_{\ell=1}^{m(t) - 1} j_{\ell} \ell}{m(t)}} + \sum_{\ell=1}^{m(t) - 1} {j_{\ell} \choose 2}$$

$$\times \sum_{k=0}^{m(t) - 1} q^{-kN} \prod_{\ell=1}^{m(t) - 1} \left[n + I(\ell \le k) \right].$$

$$q - binomial coefficient$$

▶ Let
$$\mathcal{F}_t(q) := (-1)^{h''(t)} q^{-h'(t)} \sum_{n \geq 0} (q)_n \sum_{j_\ell} q^{\nu} \prod_{\ell=1}^{m(t)-1} {n+I(\ell \leq k) \brack j_\ell}.$$

Our situation

• We have $\mathfrak{F}_1(q) = F(q)$ and

$$\zeta_N^{2^t-1}\mathcal{F}_t(\zeta_N)=J_N(T(3,2^t);\zeta_N).$$

Write

$$\mathfrak{F}_t(1-q)=:\sum_{n\geq 0}\xi_t(n)q^n.$$

► For example,

$$\mathcal{F}_2(1-q) = 1 + 3q + 11q^2 + 50q^3 + 280q^4 + 1890q^5 + \cdots$$

and

$$\mathcal{F}_3(1-q) = 1 + 7q + 49q^2 + 420q^3 + 4515q^4 + 59367q^5 + \cdots$$

First result

Let

$$\chi_t(\textit{n}) := \begin{cases} 1 & \text{if } \textit{n} \equiv 2^{t+1} - 3, \ 3 + 2^{t+2} & (\text{mod } 3 \cdot 2^{t+1}), \\ -1 & \text{if } \textit{n} \equiv 2^{t+1} + 3, \ 2^{t+2} - 3 & (\text{mod } 3 \cdot 2^{t+1}), \\ 0 & \text{otherwise} \end{cases}$$

and for $s \in \mathbb{N}$, define

$$S_{t,\chi_t}(s) = \Big\{0 \le j \le s-1 : j \equiv \frac{n^2 - (2^{t+1} - 3)^2}{3 \cdot 2^{t+2}} \pmod{s} \text{ where } \chi_t(n) \ne 0\Big\}.$$

Theorem (Bijaoui, Boden, Myers, -, Rushworth, Tronsgard, Zhou)

If p \geq 5 is a prime and j $\in \{1,2,\ldots,p-1-\text{max }S_{t,\chi_t}(p)\}$, then

$$\xi_t(p^r m - j) \equiv 0 \pmod{p^r}$$

for all natural numbers r, m and $t \ge 1$.

Sketch of proof

▶ Prove a new "strange identity". Recall that (Zagier, 2001)

$$F(q)" = " - \frac{1}{2} \sum_{n \ge 1} n \underbrace{\left(\frac{12}{n}\right)}_{\chi_1(n)} q^{\frac{n^2 - 1}{24}}.$$

▶ We first prove that

$$\mathcal{F}_t(q)" = " - \frac{1}{2} \sum_{n \geq 0} n \chi_t(n) q^{\frac{n^2 - (2^{t+1} - 3)^2}{3 \cdot 2^{t+2}}}.$$

▶ This follows from the following key identity . . .

Key identity

$$\begin{split} \frac{1}{2} \sum_{n \geq 0} n \chi_t(n) q^{\frac{n^2 - (2^{t+1} - 3)^2}{3 \cdot 2^{t+2}}} - \frac{2^{t+1} - 3}{2} (q^{2^t - 1}, q^{2^t + 1}, q^{2^{t+1}}; q^{2^{t+1}})_{\infty} (q^2, q^{2^{t+2} - 2}; q^{2^{t+2}})_{\infty} \\ &= (-1)^{h''(t) + 1} q^{-h'(t)} \sum_{n \geq 0} \left[(q)_n - (q)_{\infty} \right] \\ &\qquad \times \sum_{j_{\ell}} ' (-1)^{\sum_{\ell = 1}^{m(t) - 1} j_{\ell}} q^{\nu} \sum_{k = 0}^{m(t) - 1} \prod_{\ell = 1}^{m(t) - 1} \left[n + I(\ell \leq k) \right] \\ &+ (-1)^{h''(t) + 1} q^{-h'(t)} (q)_{\infty} \left(\sum_{i = 1}^{\infty} \frac{q^i}{1 - q^i} \right) \sum_{n \geq 0} b_{n, t}(q) \\ &+ (-1)^{h''(t)} q^{-h'(t)} (q)_{\infty} \sum_{n \geq 0} (n - h(t)) b_{n, t}(q) \end{split}$$

where $b_{n,t}(q)$ is an explicit q-multisum.

Sketch of proof

Let p be a prime ≥ 5 and $n \geq r$ be an integer. Consider the truncation of $\mathcal{F}_t(1-q)$, then its p-dissection:

$$\begin{split} \mathcal{F}_t(1-q;\rho n-1) &= \sum_{i=0}^{p-1} (1-q)^i A_{t,p}(\rho n-1,i,(1-q)^p) \\ &= \sum_{i \in S_{t,\chi_t}(\rho)} (1-q)^i A_{t,\rho}(\rho n-1,i,(1-q)^p) \\ &+ \sum_{i \notin S_{t,\chi_t}(\rho)} (1-q)^i A_{t,\rho}(\rho n-1,i,(1-q)^p) \\ &=: \sum_1 + \sum_2. \end{split}$$

- ▶ The coefficient of $q^{p^r m j}$ in the summand of \sum_1 is $\equiv 0 \pmod{p^r}$.
- ► (AKL, 2019) Strange identity implies $\sum_{q} \equiv O(q^{pn-(p-1)(r-1)}) \pmod{p^r}$.

Quantum modularity

Definition (Zagier, 2010)

A quantum modular form of weight $k \in \frac{1}{2}\mathbb{Z}$ is a function $g : \mathbb{Q} \to \mathbb{C}$ such that for all $\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in SL_2(\mathbb{Z})$,

$$r_{\gamma}(\alpha) := g(\alpha) - (c\alpha + d)^{-k} g(\frac{a\alpha + b}{c\alpha + d})$$

has "nice" properties (e.g., continuity or analyticity).

- ▶ (Zagier, 2010) The function $\phi(\alpha) := e^{\frac{\pi i \alpha}{12}} F(e^{2\pi i \alpha})$ is a quantum modular form of weight 3/2 with respect to $SL_2(\mathbb{Z})$.
- Suitable modifications can be made to restrict the domain of r_{γ} to appropriate subsets of \mathbb{Q} and allow both multiplier systems and transformations on subgroups of $SL_2(\mathbb{Z})$.

Second result

▶ For $N \in \mathbb{N}$, let

$$\Gamma_1(\textit{N}) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \textit{SL}_2(\mathbb{Z}) : c \equiv 0 \; (\text{mod N}), \; a \equiv d \equiv 1 \; (\text{mod N}) \right\}$$
 and set $s_t := \frac{(2^{t+1}-3)^2}{3 \cdot 2^{t+2}}$.

Theorem (Goswami, -)

For an integer $t \geq 2$ and $\alpha \in \mathbb{Q}$, $\phi_t(\alpha) := e^{2\pi i s_t \alpha} \mathfrak{T}_t(e^{2\pi i \alpha})$ is a quantum modular form of weight 3/2 on $A_{3\cdot 2^{t+1}} := \{\alpha \in \mathbb{Q} : \alpha \text{ is } \Gamma_1(3\cdot 2^{t+2})\text{-equivalent to 0 or } i\infty\}$ with respect to $\Gamma_1(3\cdot 2^{t+2})$.

Idea of proof

$$\qquad \qquad \mathbf{Let} \,\, \theta_t(z) := \sum_{n \geq 0} \chi_t(n) q^{\frac{n^2}{3 \cdot 2^{t+2}}} \,\, \text{and} \,\, \Theta_t(z) := \sum_{n \geq 0} n \chi_t(n) q^{\frac{n^2}{3 \cdot 2^{t+1}}}.$$

▶ For $\alpha \in A_{3.2^{t+1}}$, we show that

$$\Theta_t(\alpha) - (\Theta_t|_{\frac{3}{2},\chi_t}\gamma)(\alpha) =: r_{\gamma,t}(\alpha)$$

where

$$r_{\gamma,t}(z) = -rac{\sqrt{3\cdot 2^{t+1}}\cdot \mathrm{e}^{rac{i\pi}{4}}}{2\pi}\int_{\gamma^{-1}(i\infty)}^{i\infty} heta_t(au)(au-ar{z})^{-rac{3}{2}}\;d au.$$

▶ Apply the "strange identity" for $\mathcal{F}_t(q)$.

Future work

Consider the picture:

► T(3,2): Zagier $\rightsquigarrow F \checkmark$, HL $\rightsquigarrow U \checkmark$ T(2,2t+1): Hikami $\rightsquigarrow F \checkmark$, HL $\rightsquigarrow U$? $T(3,2^t)$: Goswami, $- \rightsquigarrow F \checkmark$, NO U yet!! Satellite knots? Hyperbolic knots?

Future work

We have

$$(q)_{\infty}(-1)^{h''(t)}q^{-h'(t)}\sum_{j_{\ell}}'(-1)^{\sum_{\ell=1}^{m(t)-1}j_{\ell}}rac{q^{
u}}{(q)_{j_{1}}\cdots(q)_{j_{m(t)-1}}} \ = (q^{2^{t}-1},q^{2^{t}+1},q^{2^{t+1}};q^{2^{t+1}})_{\infty}(q^{2},q^{2^{t+2}-2};q^{2^{t+2}})_{\infty}.$$

This recovers an identity of Slater:

$$(q)_{\infty}\sum_{n\geq 0}\frac{q^{2n(n+1)}}{(q)_{2n+1}}=(q^3,q^5,q^8;q^8)_{\infty}(q^2,q^{14};q^{16})_{\infty}.$$

Proof using Bailey pairs? Combinatorial proof?

- ▶ The numbers $\xi_t(n)$ appear to be positive. What are they counting?
- ► Thank you!