Generalized Fishburn numbers, torus knots and quantum modularity

Colin Bijaoui ${ }^{\star}$, Hans Boden ${ }^{\star}$, Beckham Myers ${ }^{\dagger}$, Ankush Goswami ${ }^{\dagger \dagger}$, Robert Osburn ${ }^{\ddagger}$, Will Rushworth*, Aaron Tronsgard ${ }^{\S}$, Shaoyang Zhou ${ }^{\star \star}$
${ }^{\star}$ McMaster, ${ }^{\dagger}$ Harvard, ${ }^{\dagger \dagger}$ RISC, ${ }^{\ddagger}$ UCD, ${ }^{\S}$ Toronto, ${ }^{\star \star}$ Vanderbilt

December 8, 2020

Two goals

- "Generalized Fishburn numbers and torus knots", JCTA 178 (2021), 105355.

- "Quantum modularity of partial theta series with periodic coefficients", Forum Math., to appear.

Fishburn numbers

- The Fishburn numbers $\xi(n)$ are the coefficients in the expansion of

$$
F(1-q)=: \sum_{n \geq 0} \xi(n) q^{n}=1+q+2 q^{2}+5 q^{3}+15 q^{4}+53 q^{5}+\cdots
$$

where $F(q):=\sum_{n \geq 0}(q)_{n}$ is the Kontsevich-Zagier "strange" series. Here,

$$
(a)_{n}=(a ; q)_{n}:=\prod_{k=1}^{n}\left(1-a q^{k-1}\right)
$$

valid for $n \in \mathbb{N}_{0} \cup\{\infty\}$.

- $F(q)$ satisfies a "duality" and is a "modular" object.
- $\xi(n)$'s have many nice combinatorial interpretations (see A022493).

Arithmetic properties of $\xi(n)$

- Andrews and Sellers (2016), Guerzhoy, Kent and Rolen (2014), Garvan (2015), Ahlgren and Kim (2015), Straub (2015) studied prime power congruences for $\xi(n)$.
- For example, we have

$$
\begin{gathered}
\xi\left(5^{r} m-1\right) \equiv \xi\left(5^{r} m-2\right) \equiv 0 \quad\left(\bmod 5^{r}\right), \\
\xi\left(7^{r} m-1\right) \equiv 0 \quad\left(\bmod 7^{r}\right)
\end{gathered}
$$

and

$$
\xi\left(11^{r} m-1\right) \equiv \xi\left(11^{r} m-2\right) \equiv \xi\left(11^{r} m-3\right) \equiv 0 \quad\left(\bmod 11^{r}\right) .
$$

- Our first goal is to generalize $\xi(n)$ using knot theory.

Knots

- A knot K is an embedding of a circle in \mathbb{R}^{3}. For example, the right-handed trefoil knot is given by

- We will consider the family of torus knots $T(p, q)$:

Knots

Theorem (Reidemeister, 1927)
Let K and K^{\prime} be two knots with diagrams D and D^{\prime}. Then K is isotopic to K^{\prime} in \mathbb{R}^{3} if and only if D is related to D^{\prime} by a sequence of isotopies of \mathbb{R}^{2} and the moves RI, RII and RIII given by the following:

The Jones polynomial

- The Kauffman bracket $\langle D\rangle$ of D is defined by

$$
\begin{aligned}
\langle D \sqcup \bigcirc\rangle & =\left(-A^{2}-A^{-2}\right)\langle D\rangle \\
\langle\vdots\rangle & \left.=A\left\langle\begin{array}{l}
\vdots \\
\vdots
\end{array}\right\rangle\right\rangle+A^{-1}\left\langle\begin{array}{l}
0 \\
\vdots \\
\ddots
\end{array}\right\rangle \\
\langle\text { empty diagram }\rangle & =1 .
\end{aligned}
$$

- $\langle D\rangle$ is invariant under RII and RIII, but not RI as

$$
\langle J\rangle=-A^{-3}\langle\square\rangle
$$

The Jones polynomial

- The Jones polynomial $V(K)=V(K ; q)$ is given by

$$
V(K)=\left.\frac{1}{\left(-A^{2}-A^{-2}\right)}(-A)^{-3 w(D)}\langle D\rangle\right|_{A^{2}=q^{-1 / 2}}
$$

where

$$
w(D)=
$$

is the "writhe" of D.

- $V(K)$ is invariant under RI, RII and RIII.

The colored Jones polynomial

- The colored Jones polynomial $J_{N}(K ; q)$ is a linear combination of cablings of D using Chebyshev polynomials: $S_{1}(x)=1, S_{2}(x)=x, S_{N}(x)=x S_{N-1}(x)-S_{N-2}(x)$.
- For example, $S_{3}(x)=x^{2}-1$. So, we have

- The $N=2$ case recovers the Jones polynomial.

Expansions

- (Habiro, 2008) For any knot K, we have the "cyclotomic expansion"

$$
J_{N}(K ; q)=\sum_{n \geq 0} \underbrace{C_{n}(K ; q)}_{\in \mathbb{Z}\left[q^{ \pm 1]}\right]}\left(q^{1+N}\right)_{n}\left(q^{1-N}\right)_{n} .
$$

- (Masbaum, 2003) For example,

$$
J_{N}\left(\text { trefoil }^{*} ; q\right)=\sum_{n \geq 0} q^{n}\left(q^{1+N}\right)_{n}\left(q^{1-N}\right)_{n}
$$

- (Habiro (2000), T. Lê (2003)) The "non-cyclotomic" expansion is

$$
J_{N}(\text { trefoil } ; q)=q^{1-N} \sum_{n \geq 0} q^{-n N}\left(q^{1-N}\right)_{n}
$$

Expansions

- (Bryson, Ono, Pitman, Rhoades, 2012, PNAS) We have the "duality"

$$
F\left(\zeta_{N}^{-1}\right)=U\left(-1 ; \zeta_{N}\right)
$$

where

$$
U(x ; q)=\sum_{n \geq 0}(-x q)_{n}\left(-x^{-1} q\right)_{n} q^{n+1} .
$$

- For any knot K, we have $J_{N}\left(K ; q^{-1}\right)=J_{N}\left(K^{*} ; q\right)$. Thus,

$$
F\left(\zeta_{N}^{-1}\right) \underbrace{=}_{\text {Habiro, Lêe }} J_{N}\left(\text { trefoil } ; \zeta_{N}^{-1}\right) \zeta_{N}=J_{N}\left(\text { trefoil }{ }^{*} ; \zeta_{N}\right) \zeta_{N} \underbrace{=}_{\text {Masbaum }} U\left(-1 ; \zeta_{N}\right) .
$$

- (Hikami, Lovejoy, 2015) $U(x ; q)$ is a (mixed) mock modular form (when x is a root of unity $\neq-1, \pm i$) as

$$
(1-x) U(-x ; q)=\frac{q}{(q)_{\infty}}\left(\sum_{r, n \geq 0}-\sum_{r, n<0}\right)(-1)^{n+r} x^{-r} q^{\frac{n(3 n+5)}{2}+2 n r+\frac{r(r+3)}{2}} .
$$

Our situation

- Consider the family of torus knots $T\left(3,2^{t}\right), t \geq 1$. In 2016, Konan proved

$$
\begin{aligned}
J_{N}\left(T\left(3,2^{t}\right) ; q\right)= & \left.\sum_{n \geq 0}(-1)^{h^{\prime \prime}(t)} q^{2^{t}-1-h^{\prime}(t)-N}\right)_{n} q^{-N n m(t)} \\
\times & \sum_{3 \sum_{\ell=1}^{m(t)-1}{ }_{j \ell \ell} \ell=1}\left(-q^{-N}\right)^{\sum_{\ell=1}^{m(t)-1} j_{\ell}} q^{\frac{-a(t)+\sum_{\ell=1}^{m(t)-1} j_{\ell} \ell}{m(t)}+\sum_{\ell=1}^{m(t)-1}\binom{j \ell}{2}} \\
& \times \sum_{k=0}^{m(t)-1} q^{-k N} \prod_{\ell=1}^{m(t)-1} \underbrace{\left[\begin{array}{c}
n+I(\ell)) \\
j_{\ell}
\end{array}\right]}_{q \text {-binomial coefficient }}
\end{aligned}
$$

- Let $\mathcal{F}_{t}(q):=(-1)^{h^{\prime \prime}(t)} q^{-h^{\prime}(t)} \sum_{n \geq 0}(q)_{n} \sum_{j_{\ell}}^{\prime} q^{v} \prod_{\ell=1}^{m(t)-1}\left[\begin{array}{c}n+I(\ell \leq k) \\ j \ell\end{array}\right]$.

Our situation

- We have $\mathcal{F}_{1}(q)=F(q)$ and

$$
\zeta_{N}^{2^{t}-1} \mathcal{F}_{t}\left(\zeta_{N}\right)=J_{N}\left(T\left(3,2^{t}\right) ; \zeta_{N}\right)
$$

- Write

$$
\mathcal{F}_{t}(1-q)=: \sum_{n \geq 0} \xi_{t}(n) q^{n} .
$$

- For example,

$$
\mathcal{F}_{2}(1-q)=1+3 q+11 q^{2}+50 q^{3}+280 q^{4}+1890 q^{5}+\cdots
$$

and

$$
\mathcal{F}_{3}(1-q)=1+7 q+49 q^{2}+420 q^{3}+4515 q^{4}+59367 q^{5}+\cdots .
$$

First result

- Let

$$
\chi_{t}(n):=\left\{\begin{array}{lll}
1 & \text { if } n \equiv 2^{t+1}-3,3+2^{t+2} & \left(\bmod 3 \cdot 2^{t+1}\right) \\
-1 & \text { if } n \equiv 2^{t+1}+3,2^{t+2}-3 & \left(\bmod 3 \cdot 2^{t+1}\right) \\
0 & \text { otherwise } &
\end{array}\right.
$$

and for $s \in \mathbb{N}$, define

$$
S_{t, \chi_{t}}(s)=\left\{0 \leq j \leq s-1: j \equiv \frac{n^{2}-\left(2^{t+1}-3\right)^{2}}{3 \cdot 2^{t+2}} \quad(\bmod s) \text { where } \chi_{t}(n) \neq 0\right\}
$$

Theorem (Bijaoui, Boden, Myers, -, Rushworth, Tronsgard, Zhou) If $p \geq 5$ is a prime and $j \in\left\{1,2, \ldots, p-1-\max S_{t, \chi_{t}}(p)\right\}$, then

$$
\xi_{t}\left(p^{r} m-j\right) \equiv 0 \quad\left(\bmod p^{r}\right)
$$

for all natural numbers r, m and $t \geq 1$.

Sketch of proof

- Prove a new "strange identity". Recall that (Zagier, 2001)

$$
F(q) "="-\frac{1}{2} \sum_{n \geq 1} n \underbrace{\left(\frac{12}{n}\right)}_{\chi_{1}(n)} q^{\frac{n^{2}-1}{24}} .
$$

- We first prove that

$$
\mathcal{F}_{t}(q)^{\prime \prime}="-\frac{1}{2} \sum_{n \geq 0} n \chi_{t}(n) q^{\frac{n^{2}-\left(2^{t+1}-3\right)^{2}}{3 \cdot 2^{t+2}}}
$$

- This follows from the following key identity ...

Key identity

$$
\begin{aligned}
& \frac{1}{2} \sum_{n \geq 0} n \chi_{t}(n) q^{\frac{n^{2}-\left(2^{t+1}-3\right)^{2}}{3 \cdot 2^{t+2}}}-\frac{2^{t+1}-3}{2}\left(q^{2^{t}-1}, q^{2^{t}+1}, q^{2^{t+1}} ; q^{2^{t+1}}\right)_{\infty}\left(q^{2}, q^{2^{t+2}-2} ; q^{2^{t+2}}\right)_{\infty} \\
& =(-1)^{h^{\prime \prime}(t)+1} q^{-h^{\prime}(t)} \sum_{n \geq 0}\left[(q)_{n}-(q)_{\infty}\right] \\
& \\
& \quad \times \sum_{j_{\ell}}^{\prime}(-1)^{\sum_{\ell=1}^{m(t)-1} j \ell} q^{v} \sum_{k=0}^{m(t)-1} \prod_{\ell=1}^{m(t)-1}\left[\begin{array}{c}
n+I(\ell \leq k) \\
j \ell
\end{array}\right] \\
& +(-1)^{h^{\prime \prime}(t)+1} q^{-h^{\prime}(t)}(q)_{\infty}\left(\sum_{i=1}^{\infty} \frac{q^{i}}{1-q^{i}}\right) \sum_{n \geq 0} b_{n, t}(q) \\
& +(-1)^{h^{\prime \prime}(t)} q^{-h^{\prime}(t)}(q)_{\infty} \sum_{n \geq 0}(n-h(t)) b_{n, t}(q)
\end{aligned}
$$

where $b_{n, t}(q)$ is an explicit q-multisum.

Sketch of proof

- Let p be a prime ≥ 5 and $n \geq r$ be an integer. Consider the truncation of $\mathcal{F}_{t}(1-q)$, then its p-dissection:

$$
\begin{aligned}
\mathcal{F}_{t}(1-q ; p n-1)= & \sum_{i=0}^{p-1}(1-q)^{i} A_{t, p}\left(p n-1, i,(1-q)^{p}\right) \\
= & \sum_{i \in S_{t, \chi t}(p)}(1-q)^{i} A_{t, p}\left(p n-1, i,(1-q)^{p}\right) \\
& +\sum_{i \notin S_{t, \chi t}(p)}(1-q)^{i} A_{t, p}\left(p n-1, i,(1-q)^{p}\right) \\
= & \sum_{1}+\sum_{2}
\end{aligned}
$$

- The coefficient of $q^{p^{r} m-j}$ in the summand of \sum_{1} is $\equiv 0\left(\bmod p^{r}\right)$.
- (AKL, 2019) Strange identity implies $\sum_{2} \equiv O\left(q^{p n-(p-1)(r-1)}\right)\left(\bmod p^{r}\right)$.

Quantum modularity

Definition (Zagier, 2010)

A quantum modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ is a function $g: \mathbb{Q} \rightarrow \mathbb{C}$ such that for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$,

$$
r_{\gamma}(\alpha):=g(\alpha)-(c \alpha+d)^{-k} g\left(\frac{a \alpha+b}{c \alpha+d}\right)
$$

has "nice" properties (e.g., continuity or analyticity).

- (Zagier, 2010) The function $\phi(\alpha):=e^{\frac{\pi i \alpha}{12}} F\left(e^{2 \pi i \alpha}\right)$ is a quantum modular form of weight $3 / 2$ with respect to $S L_{2}(\mathbb{Z})$.
- Suitable modifications can be made to restrict the domain of r_{γ} to appropriate subsets of \mathbb{Q} and allow both multiplier systems and transformations on subgroups of $S L_{2}(\mathbb{Z})$.

Second result

- For $N \in \mathbb{N}$, let

$$
\Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0(\bmod N), a \equiv d \equiv 1(\bmod N)\right\}
$$

$$
\text { and set } s_{t}:=\frac{\left(2^{t+1}-3\right)^{2}}{3 \cdot 2^{t+2}}
$$

Theorem (Goswami, -)

For an integer $t \geq 2$ and $\alpha \in \mathbb{Q}, \phi_{t}(\alpha):=e^{2 \pi i s_{t} \alpha} \mathcal{F}_{t}\left(e^{2 \pi i \alpha}\right)$ is a quantum modular form of weight $3 / 2$ on $A_{3 \cdot 2^{t+1}}:=\left\{\alpha \in \mathbb{Q}: \alpha\right.$ is $\Gamma_{1}\left(3 \cdot 2^{t+2}\right)$-equivalent to 0 or $\left.i \infty\right\}$ with respect to $\Gamma_{1}\left(3 \cdot 2^{t+2}\right)$.

Idea of proof

- Let $\theta_{t}(z):=\sum_{n \geq 0} \chi_{t}(n) q^{\frac{n^{2}}{3 \cdot 2^{2+2}}}$ and $\Theta_{t}(z):=\sum_{n \geq 0} n \chi_{t}(n) q^{\frac{n^{2}}{} \cdot 2^{2+1}}$.
- For $\alpha \in A_{3 \cdot 2^{t+1}}$, we show that

$$
\Theta_{t}(\alpha)-\left(\left.\Theta_{t}\right|_{\frac{3}{2}, \chi_{t}} \gamma\right)(\alpha)=: r_{\gamma, t}(\alpha)
$$

where

$$
r_{\gamma, t}(z)=-\frac{\sqrt{3 \cdot 2^{t+1}} \cdot e^{\frac{i \pi}{4}}}{2 \pi} \int_{\gamma^{-1}(i \infty)}^{i \infty} \theta_{t}(\tau)(\tau-\bar{z})^{-\frac{3}{2}} d \tau .
$$

- Apply the "strange identity" for $\mathcal{F}_{t}(q)$.

Future work

- Consider the picture:

- $T(3,2)$: Zagier $\rightsquigarrow F \checkmark, H L \rightsquigarrow U \checkmark$
$T(2,2 t+1)$: Hikami $\rightsquigarrow F \checkmark, \mathrm{HL} \rightsquigarrow U$?
$T\left(3,2^{t}\right)$: Goswami, $-\rightsquigarrow F \checkmark$, NO U yet!!
Satellite knots? Hyperbolic knots?

Future work

- We have

$$
\begin{aligned}
(q)_{\infty}(-1)^{h^{\prime \prime}(t)} q^{-h^{\prime}(t)} \sum_{j_{\ell}}^{\prime} & (-1)^{\sum_{\ell=1}^{m(t)-1} j \ell} \frac{q^{v}}{(q)_{j_{1}} \cdots(q)_{j_{m(t)-1}}} \\
& =\left(q^{2^{t}-1}, q^{2^{t}+1}, q^{2^{t+1}} ; q^{2^{t+1}}\right)_{\infty}\left(q^{2}, q^{2^{t+2}-2} ; q^{2^{t+2}}\right)_{\infty}
\end{aligned}
$$

This recovers an identity of Slater:

$$
(q)_{\infty} \sum_{n \geq 0} \frac{q^{2 n(n+1)}}{(q)_{2 n+1}}=\left(q^{3}, q^{5}, q^{8} ; q^{8}\right)_{\infty}\left(q^{2}, q^{14} ; q^{16}\right)_{\infty}
$$

Proof using Bailey pairs? Combinatorial proof?

- The numbers $\xi_{t}(n)$ appear to be positive. What are they counting?
- Thank you!

