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Theorem (Hamilton, 1843)

The R-algebra H with basis {1,i,j,ij} and
defining relations
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Theorem (Wedderburn)

For any field F, if the F-algebra (a,b, F') is
not a division algebra then
(aa ba F) = I\IQ(F)
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Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k, and fix quadratic extensions

Ly, Lo, ..., L._ofk Let L be the compositum of the L;, and
suppose tha The number of quaternion algebras
over k with discriminant having norm less than x and which
admit embeddings of all of the L; is

~ - a:l/Q/(loga:)l_%",

as x — 00. Here ) is a positive constant depending only on the

L; and k.
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Theorem (Delange's Tauberian Theorem)

Let G(s) =) % be a Dirichlet series satisfying:
©Q ayny >0 for all N and G(s) converges for Re(s) >@
@ G(s) can be continued to an analytic function in the

closed half-plane Re(s) > p except possibly for a
singularity at s = p.

© There is an open neighborhood of p and functions
A(s), B(s) analytic at s = p with
G(s) = A(s)/(s — p)¥+ B(s) at every point in this
neighborhood having Re(s) > p.

Then as ¥ — oo we have
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Leon Green (1960) asked if the spectrum of M determines its
isometry class.

The spectrum of M is essentially the collection of frequencies
produced by a drumhead shaped like M.

Mark Kac (1966) popularized this
question for planar domains:

Can you hear the shape of a drum?




Theorem (Gordon, Webb, Wolpert, 1992)

One cannot hear the shape of a drum.
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Theorem (Vigneras, 1980)

There exist isospectral
non-isometric hyperbolic 2- and

3-manifolds.

A pair of isospectral but non-isometric hyperbolic 2-orbifolds
(due to B. Linowitz and J. Voight).
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Elementary results from geometric group theory:

o Isom™(H?) = PSLy(R).

@ Every orientable hyperbolic 2-manifold is of the form
H? /T for some discrete subgroup I' of PSLsy(R).
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Theorem (Reid, 1992)

If M is an arithmetic, hyperbolic
surface and LS(M) = LS(N) then
M and N are commensurable.

Theorem (Chinburg, Hamilton, Long, Reid, 2008)

If M and N are arithmetic hyperbolic 3-manifolds and
LS(M) = LS(N) then M and N are commensurable.
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Theorem (Futer and Millichap, 2016)

For every sufficiently large n > O there exists a pair of
non-isometric finite-volume hyperbolic 3-manifolds { M, N'}
such that:

©Q vol(M) = vol(N).

@ The (complex) length spectra of M and N agree up to
length n.

© M and N have at least €" /n closed geodesics up to
length n.

Q M and N are not commensurable.




Summu%

In summary:

@ When two arithmetic hyperbolic 2- or 3-manifolds have
the same geodesic lengths, they are commensurable.

@ Two non-arithmetic hyperbolic 2- or 3- manifolds can
have a great deal in common (same volume, lots of overlap
in geodesic lengths) but still not be commensurable.

Motivating Questions:
@ Can we make Reid’s result effective?
@ If the length spectra have a great deal of overlap, must

the corresponding arithmetic, hyperbolic 2-manifolds be
commensurable?
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Theorem (Borel's finiteness result)

For each V' € Rx>( there are only finitely many arithmetic
hyperbolic 2- manifolds of volume at most V.
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Theorem (Linowitz, McReynolds, Pollack, T.)

If M and N are arithmetic hyperbolic surfaces of area at
most V' then

L(V) < e €2 log(V)V 130

for absolute, effectively computable constants ¢i and cs.
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Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fixa-number field k, and fix quadratic extensions
f k. Let L be the compositum of the L;, and
suppose that [L : k] = 2". The number of quaternion algebras

over k with discriminant having norm less than x and which
admit embeddings of all of the L; is

~0 - :171/2/(10gm)1_2l",

as x — 00. Here 0 is a positive constant depending only on the

L; and k.

Let w(V,.S) denote the maximum cardinality of a collection of

pairwise non-commensurable arithmetic hyperbolic 2—orbifolds

derived from quaternion algebras, each of which has volume
less than V' and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If ©1(V.S) — oo as V — oo, then there are integers
1 <r,s <|S| and constants ¢y, ca > 0 such that
>/
?Q;,r-)ﬂ"‘z < c1V cV

oy = LG S
log(V)*~2r log(V)*~2s

for all sufficiently large V.
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Let m(V,S) denote the maximum cardinality of a collection of

pairwise non-commensurable arithmetic hyperbolic 2—orbifolds

derived from quaternion algebras, each of which has volume
less than V' and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If m(V,S) — oo as V — oo, then there are integers
1 <r,s <|S| and constants c1,ca > 0 such that

V oV
AU <n(V,8) < —2
log(V')1=2 log(V')1=3

for all sufficiently large V.
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Let 7(V,S) denote the maximum cardinality of a collection of
pairwise non-commensurable arithmetic hyperbolic 2—orbifolds
derived from quaternion algebras, each of which has volume
less than V' and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Suppose that 7(V,S) — oo as V — oo. Then, for every k > 2,
there is a constant C' > 0 such that there are infinitely many
k—tuples My, ..., M, of arithmetic hyperbolic 2—orbifolds
which are pairwise non-commensurable, have length spectra
containing S, and volumes satisfying |vol(M;) — vol(M;)| < C
foralll's 1,7 =k
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Corollary (Zhang, 2013)

There are infinitely many pairs of primes that differ by at most
70, 000, 000.

Theorem (Maynard-Tao, November 2013)

Let m > 2. There for any admissible k-tuple H = (hq, ..., hy)

with “large enough” k (relative to m), there are infinitely many
n such that at least m of n + hy,...,n + hy are prime.
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Definition

We say that a k-tuple (hy, ..., hx) of nonnegative integers is
admissible if it doesn’t cover all of the possible remainders
(mod p) for any prime p.

E_X. Co)a'/(;’) % ) i;)

Pasidue Classes not Covered:
1L (mod &)
1 (mod 3)
Yy (mod 5)
3 (mo2 )
3(mpd 121)
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Theorem (Thorner, 2014)

Let K/Q be a Galois extension of number fields with Galois
group G and discriminant A, and let C be a conjugacy class of
G. Let P be the set of primes p{ A for which (KT/Q) =
Then there are infinitely many pairs of distinct primes

p1,p2 € P such that |p1 — pa| < ¢, where ¢ is a constant
depending on G,C, A.
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Some examples of Chebotarev sets:

@ The set of primes p =1 (mod 3) for which 2 is a cube
(mod p).

@ Fix n € Z™. The set of primes expressible in the form
x2 + nyQ.

@ Let 7 be the Ramanujan tau function. The set of primes p
for which 7(p) = 0 (mod d) for any positive integer d.

@ The set of primes p for which #E(F,) =p+1 (mod d)
for any positive integer d.
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Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Let L/K be a Galois extension of number fields, let C be a
conjugacy class of Gal(L/K), and let k be a positive integer.
Then, for a certain constant ¢ = cr, /i c 1., there are infinitely
many k—tuples Py, ..., P, of prime ideals of K for which the
following hold:

L/K L/K
0(1/31)::(}/)]6):6'
Q Py,..., P lie above distinct rational primes,

© ceach of Py,..., P, has degree 1,
Q |N(P) — N(P;j)| < ¢, for each pair of i,j € {1,2,...,k}.

Thorner's theorem is the case where K = Q.
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In summary:

@ There are lots of pairwise non-commensurable arithmetic
hyperbolic 2-manifolds with a great deal of overlap in their
geodesic lengths.

@ One might wonder if the volumes of these manifolds are
getting further and further apart. We show that they are
not.

@ Our proof involves generalizing the work of Maynard-Tao
and Thorner, and then translating it to a geometric
setting.
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