Counting Quaternion Algebras, with applications to

Spectral Geometry

Lola Thompson
(joint w/ B. Linowitz, D. B. Mc Reynolds and P. Pollack)

Overview

Our Goal : Prove effective versions of "rigidity" results for arithmetic, hyperbolic 2-\$3-manfolds

Key Idea:

$$
\left\{\begin{array}{c}
\text { Maximal subfields } \\
\text { of quaternion algebras }
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}
\text { lengths of } \\
\text { geodesics on } \\
\text { arithmetic hyperbolic } \\
2-\$ 3 \text {-manifolds } \\
\uparrow \\
\text { number } \\
\text { theory } \\
\text { geometry }
\end{array}\right\}
$$

Today's plan:
(1) Introduce quaternion algs.
(2) Our results on counting quaternion algs.
(3) Geometric Background
(4) How to contact gu faces from quaternion algebras
(5) Our nesults on Surfaces
(6) Connections to bounded gaps between primes
I. Quaternion algebras a orders

Theorem (Hamilton, 1843)
The \mathbb{R}-algebra \mathbb{H} with basis $\{1, i, j, i j\}$ and defining relations

$$
i^{2}=-1 \quad j^{2}=-1 \quad i j=-j i
$$

is a four-dimensional division algebra.

Brougham Bridge:

Notation: Write $(-1,-1, \mathbb{R})$ instead of H.

T can be
Can replace w/ other units replaced ur other fields of char o
in \mathbb{R}
Ex $(1,1, \mathbb{R})$ has $i^{2}=j^{2}=1$ \&

$$
i j=-j i
$$

observe:

$$
\begin{aligned}
(1,1, \mathbb{R}) & \cong M_{2}(\mathbb{R}) \\
i & \mapsto\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
j & \mapsto\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

In general:

$$
(a, b, \mathbb{R}) \cong\left\{\begin{array}{l}
H 1 \text { if } a, b<0 \\
M_{2}(\mathbb{R}) \text { ot } \omega
\end{array}\right.
$$

Thus, (a, b, \mathbb{R}) is either a division algebra or isomorphic to $M_{2}(\mathbb{R})$.

* If we replace \mathbb{R} w/ other fields:

Theorem (Wedderburn)
For any field F, if the F-algebra (a, b, F) is not a division algebra then
$(a, b, F) \cong \mathrm{M}_{2}(F)$.

Extension of Scalars
Let K be a field, K^{\prime} / K a field ext. If $B=(a, b, K)$ is a quaternion alg $/ K$, then

$$
B \otimes_{k} K^{\prime}=\left(a, b, K^{\prime}\right)
$$

is a quaternion alg/ K^{\prime}.

Def If B is a quaternion alg/ K, let

$$
B_{p}:=B \otimes_{k} K_{p} .
$$

we say B is ramified at D if B_{p} is the unique division alg / K_{p}. Ot, B splits in \mathcal{P}.

Def Let $\operatorname{Ram}(B)$ denote the (finite) Set of primes at which B is ramified. The discriminant of B is the ideal defined by

$$
\Delta(B):=\prod_{y \in \operatorname{Ram}(B)} P
$$

Def Let B be a quaternion alg /K. The reduced norm of B is the composite map

$$
B \rightarrow M_{2}(\mathbb{C}) \xrightarrow{\text { det }} \mathbb{C}
$$

Let K be a number field w l ring of integers θ_{k}.

Def An order of a k-alg. is a subring which is also a $f . g$. O_{F}-module containing an K-basis of the algebra.

Def An order is maximal if it is not popery contained in any other order.

Ex $M_{2}(\mathbb{K})$ is a max. order of $M_{2}(\mathbb{Q})$.

II. Counting Quaternion Algebras

w/ Prescribed Embeddings

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k, and fix quadratic extensions
$L_{1}, L_{2}, \ldots, L_{r}$ of k. Let L be the compositum of the L_{i}, and suppose that $[L: k]=2^{7}$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_{i} is

$$
\sim \delta \cdot x^{1 / 2} /(\log x)^{1-\frac{1}{2^{r}}}
$$

as $x \rightarrow \infty$. Here δ is a positive constant depending only on the L_{i} and k.

Proof Sketch:
(1) Construct a Dirichlet Series whose Coefficients count the quaternion algebras w/ the properties we are interested in
(2) Apply Delange's Tauberian Thu

Theorem (Delange's Tauberian Theorem)
Let $G(s)=\sum \frac{a_{N}}{N^{s}}$ be a Dirichlet series satisfying:
(1) $a_{N} \geq 0$ for all N and $G(s)$ converges for $\mathfrak{R} e(s)>\rho$.
(2) $G(s)$ can be continued to an analytic function in the closed half-plane $\mathfrak{R e}(s) \geq \rho$ except possibly for a singularity at $s=\rho$.
(3) There is an open neighborhood of ρ and functions $A(s), B(s)$ analytic at $s=\rho$ with $G(s)=A(s) /(s-\rho)^{(3)}+B(s)$ at every point in this neighborhood having $\mathfrak{R} e(s)>\rho$.
Then as $x \rightarrow \infty$ we have

$$
\sum_{N \leq x} a_{N}=\frac{A(\rho)}{\rho \Gamma(\beta)}+o(1) x^{\rho} \log (x)^{\beta-1} .
$$

(3) Obtain an asymptotic

Handing the embeddings of the Lis

From Class Field Theory:
If B / K is a quaternion algebra and L / K is a quadratic extension, then L embeds into B iff no prime of k that divides the discriminant of B splits in L / K.

E Can use a deep result of M. Matchett Wood to model the splitting of finitely many primes as mutually independent events over the class of random quadratic extensions of k.
III. Geometric Motivation

Def \mathcal{A} closed geodesic on a Riemannian manifold M is a map

$$
C: S^{1} \rightarrow M
$$

that locally yields the shortest distance between two points.

Examples

Let M be a Compact $R_{i e}$ mannian manifold.

The Laplace eigenvalue spectrum of M, denoted $E(M)$, is the multiset of eigenvalues of the Laplacian of M.

The geodesic length spectrum of M, denoted LS(M), is the multiset of lengths of closed geodesics of M.

Let M, N be Compact Riemannian manifolds.

3 Notions of "equivalence":
(1) $M \& N$ are Commensurable if they have a common finite degree covering space.
(2) M \& N are isometric if \exists an isometry between them.
(3) $M \& N$ are iso spectral if $\varepsilon(M)=\varepsilon(N) \&$ length iso spectral $L S(M)=L S(N)$
"Inverse" questions
To what extent do the spectra of M determine its geometry/ topology?

Examples:
(1) If $L S(M)=L \delta(N)$, are M \& N isometric? No
(2) If $L S(M)=L \$(N)$, are $M \& N$ commensurable?

$$
\begin{array}{|c|c|c|}
\text { Arithmetic Mes }
\end{array}
$$

Can you hear the shape of a drum?

Leon Green (1960) asked if the spectrum of M determines its isometry class.

The spectrum of M is essentially the collection of frequencies produced by a drumhead shaped like M.

Mark Sac (1966) popularized this question for planar domains:

Can you hear the shape of a drum?

Answer: No!

Theorem (Gordon, Webb, Wolpert, 1992)
One cannot hear the shape of a drum.
$\tau_{\text {ie., isospectral }}^{\Rightarrow} \Rightarrow$ isometric

Hyperbolic $\frac{\text { Surfaces }}{\rightarrow H^{2}}$
The hyperbolic plane is a simply connected Surface w/ constant curvature -1 and can be modeled by the unit disc:
M.C. Escher's
(Circle Limit IV

Results for Hyperblic Surfaces

Theorem (Vigneras, 1980)
There exist isospectral non-isometric hyperbolic 2- and 3-manifolds.

A pair of isospectral but non-isometric hyperbolic 2-orbifolds (due to B. Linowitz and J. Voight).
IV. Constricting Arithmetic Manifolds

Elementary results from geometric group theory:

- $\operatorname{Isom}^{+}\left(\mathbf{H}^{2}\right) \cong P S L_{2}(\mathbb{R})$.
- Every orientable hyperbolic 2-manifold is of the form \mathbf{H}^{2} / Γ for some discrete subgroup Γ of $P S L_{2}(\mathbb{R})$.
we want to generalize the following construction of $P S L_{2}(\mathbb{Z})$:

Restricting ρ to θ^{1} \& Projecting onto $\mathrm{PSL}_{2}(\mathbb{R})$ gives an embedring:

$$
\bar{\rho}: O^{1} \rightarrow P S L_{2}(\mathbb{R})
$$

Notice:

* $\bar{\rho}\left(\theta^{1}\right)$ is a discrete s.g. of isometrios w/ finite covolume
* If B is a division aly, then $\bar{\rho}\left(\theta^{1}\right)$ is cocompact.
* If $\bar{\rho}\left(\theta^{1}\right)$ is torsion-free then $H^{2} / \bar{\rho}\left(\theta^{2}\right)$ is a by perbolic (2-manifold.
hyp surtaces commensuable w/ this are asithmetic.

If $L S(M)=L S(N)$, are

 $M \nsubseteq N$ Commensurable?

> Theorem (Reid, 1992)
> If M is an arithmetic, hyperbolic surface and $\mathrm{LS}(M)=\mathrm{LS}(N)$ then M and N are commensurable.

Theorem (Chinburg, Hamilton, Long, Reid, 2008)

If M and N are arithmetic hyperbolic 3-manifolds and $\mathrm{LS}(M)=\mathrm{LS}(N)$ then M and N are commensurable.

on the other hand...

Theorem (Futer and Millichap, 2016)

For every sufficiently large $n>0$ there exists a pair of non-isometric finite-volume hyperbolic 3-manifolds $\{M, N\}$ such that:
(1) $\operatorname{vol}(M)=\operatorname{vol}(N)$.
(2) The (complex) length spectra of M and N agree up to length n.
(3) M and N have at least e^{n} / n closed geodesics up to length n.
(9) M and N are not commensurable.

In summary:

- When two arithmetic hyperbolic 2 - or 3 -manifolds have the same geodesic lengths, they are commensurable.
- Two non-arithmetic hyperbolic 2 - or 3 - manifolds can have a great deal in common (same volume, lots of overlap in geodesic lengths) but still not be commensurable.

Motivating Questions:

- Can we make Reid's result effective?
- If the length spectra have a great deal of overlap, must the corresponding arithmetic, hyperbolic 2-manifolds be commensurable?
V. Our Results On Surfaces

Theorem (Borel's finiteness result)
For each $V \in \mathbb{R}_{\geq 0}$ there are only finitely many arithmetic hyperbolic 2 - manifolds of volume at most V.

Consequence: $\exists L(V) \in \mathbb{R}_{\geq 0}$ such that if M, N are arithmetic hyperbolic surfaces of area $\leq V$ and have the same geodesic lengths up to $L(V)$ then $M \$ N$ are Commensurable.

Making Reid's "Is ospectral \Rightarrow Commensurable" Result Effective

Theorem (Linowitz, McReynolds, Pollack, T.)

If M and N are arithmetic hyperbolic surfaces of area at most V then

$$
L(V) \leq c_{1} e^{c_{2} \log (V) V^{130}}
$$

for absolute, effectively computable constants c_{1} and c_{2}.

Translating Our Number

Theoretic Result to a Geometric Result

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

Fix a number field k, and fix quadratic extensions
$L_{1}, L_{2}, \ldots, L_{r}$ of k. Let L be the compositum of the L_{i}, and suppose that $[L: k]=2^{r}$. The number of quaternion algebras over k with discriminant having norm less than x and which admit embeddings of all of the L_{i} is

$$
\sim \delta \cdot x^{1 / 2} /(\log x)^{1-\frac{1}{2^{r}}}
$$

as $x \rightarrow \infty$. Here δ is a positive constant depending only on the L_{i} and k.

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2 -orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S. finite set

Theorem (Linowitz, McReynolds, Pollack, T., 2018)

If $\pi(V, S) \rightarrow \infty$ as $V \rightarrow \infty$, then there are integers $1 \leq r, s \leq|S|$ and constants $c_{1}, c_{2}>0$ such that

$$
\frac{c_{1} V}{\log (V)^{1-\frac{1}{2^{r}}}} \leq \pi(V, S) \leq \frac{c_{2} V}{\log (V)^{1-\frac{1}{2^{s}}}}
$$

for all sufficiently large V.

Pf sketch
Let M be an orth, hyp. 2.men.ibid arising foo (K, B) w/ fudameestal gap $\Gamma<P S L_{2}(\mathbb{R})$. There is a bijection:

$$
\begin{aligned}
& \left\{c_{\gamma}: S^{1} \rightarrow M\right\} \longleftrightarrow\left\{[\gamma]_{\Gamma}: \gamma \in \Gamma\right\} \\
& \text { closed } \\
& \text { goon Mr }
\end{aligned}
$$

Geodesic lengths $\ell\left(C_{\gamma}\right)$ are given by

$$
\cosh \frac{\ell\left(C_{\gamma}\right)}{2}=\frac{\operatorname{Tr}(\gamma)}{\partial}
$$

Let $\lambda_{y}:=$ unique eigenvalue of ∂

$$
w /|\lambda \gamma|>1
$$

* Each closed geodesic Cr_{γ} determine a maximal subfield K_{γ} of the guat. Ald B :

$$
\begin{aligned}
& K_{\gamma}=K\left(\lambda_{\gamma}\right) \\
&\left\{l_{1}, \ldots, l_{r}\right\} \longleftrightarrow\left\{L_{1}, \ldots, L_{r}\right\}
\end{aligned}
$$

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2 -orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2018)
If $\pi(V, S) \rightarrow \infty$ as $V \rightarrow \infty$, then there are integers $1 \leq r, s \leq|S|$ and constants $c_{1}, c_{2}>0$ such that

$$
\frac{c_{1} V}{\log (V)^{1-\frac{1}{2^{r}}}} \leq \pi(V, S) \leq \frac{c_{2} V}{\log (V)^{1-\frac{1}{2^{s}}}}
$$

for all sufficiently large V.

Conclusions:
(1) There are lots of pairwise non-Commensurable 3-manifolds w/ a great deal of overlap in their geodesic lengths.
(3) The Counting function looks a bit lila the cont of prime numbers...

Bounded Gaps Between Volumes of Manifolds

Let $\pi(V, S)$ denote the maximum cardinality of a collection of pairwise non-commensurable arithmetic hyperbolic 2 -orbifolds derived from quaternion algebras, each of which has volume less than V and geodesic length spectrum containing S.

Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Suppose that $\pi(V, S) \rightarrow \infty$ as $V \rightarrow \infty$. Then, for every $k \geq 2$, there is a constant $C>0$ such that there are infinitely many k-tuples M_{1}, \ldots, M_{k} of arithmetic hyperbolic 2-orbifolds which are pairwise non-commensurable, have length spectra containing S, and volumes satisfying $\left|\operatorname{vol}\left(M_{i}\right)-\operatorname{vol}\left(M_{j}\right)\right|<C$ for all $1 \leq i, j \leq k$.

Pf Sketch

Bore's Covolume Formula:

$B C F \Rightarrow$ If two orbifolds have the
same field of def, but
their associated Br ramify at different primes, their volumes will only differby Some furston of the Nell's.

Moral: primes wy gop between them produce orbifuns w/ volumes that have bod gaps between them!

What's missing.?

* Need orbifolds to have length Specter containing $\$$

I
quadratic extension K embed into the B's.
T need bounded gaps between pines in chebotreer sets

Bounded gaps between primes

Corollary (Zhang, 2013)

There are infinitely many pairs of primes that differ by at most $70,000,000$.

Theorem (Maynard-Tao, November 2013)

Let $m \geq 2$. There for any admissible k-tuple $\mathcal{H}=\left(h_{1}, \ldots, h_{k}\right)$ with "large enough" k (relative to m), there are infinitely many n such that at least m of $n+h_{1}, \ldots, n+h_{k}$ are prime.

Tuples of primes
Q: Are the coly many tuples of primes $\left(p+h_{1}, \ldots, p+h_{k}\right)$?

* Some tuples clearly fail:

$$
\text { Ex } p, p+2, p+4
$$

which K-tuples might work?

Definition
We say that a k-tuple $\left(h_{1}, \ldots, h_{k}\right)$ of nonnegative integers is admissible if it doesn't cover all of the possible remainders $(\bmod p)$ for any prime p.

$$
E_{x}(0,2,6,8,12)
$$

Residue classes not Covers)

$$
\begin{aligned}
& 1(\bmod \alpha) \\
& 1(\bmod 3) \\
& 4(\bmod 5) \\
& 3(\bmod 7) \\
& 3(\bmod 11)
\end{aligned}
$$

Bounded gaps between primes in chebotacer Sets

Theorem (Thorner, 2014)
Let K / \mathbb{Q} be a Galois extension of number fields with Galois group G and discriminant Δ, and let \mathcal{C} be a conjugacy class of G. Let \mathcal{P} be the set of primes $p \nmid \Delta$ for which $\left(\frac{K / \mathbb{Q}}{p}\right)=\mathcal{C}$. Then there are infinitely many pairs of distinct primes $p_{1}, p_{2} \in \mathcal{P}$ such that $\left|p_{1}-p_{2}\right| \leq c$, where c is a constant depending on G, \mathcal{C}, Δ.

Chebotarev Sets

Some examples of Chebotarev sets:

- The set of primes $p \equiv 1(\bmod 3)$ for which 2 is a cube $(\bmod p)$.
- Fix $n \in \mathbb{Z}^{+}$. The set of primes expressible in the form $x^{2}+n y^{2}$.
- Let τ be the Ramanujan tau function. The set of primes p for which $\tau(p) \equiv 0(\bmod d)$ for any positive integer d.
- The set of primes p for which $\# E\left(\mathbb{F}_{p}\right) \equiv p+1(\bmod d)$ for any positive integer d.

Generalizing Therwe's work

Theorem (Linowitz, McReynolds, Pollack, T., 2017)

Let L / K be a Galois extension of number fields, let \mathcal{C} be a conjugacy class of $\operatorname{Gal}(L / K)$, and let k be a positive integer. Then, for a certain constant $c=c_{L / K, \mathcal{C}, k}$, there are infinitely many k-tuples P_{1}, \ldots, P_{k} of prime ideals of K for which the following hold:
(1) $\left(\frac{L / K}{P_{1}}\right)=\cdots=\left(\frac{L / K}{P_{k}}\right)=\mathcal{C}$,
(2) P_{1}, \ldots, P_{k} lie above distinct rational primes,
(3) each of P_{1}, \ldots, P_{k} has degree 1 ,
(9) $\left|N\left(P_{i}\right)-N\left(P_{j}\right)\right| \leq c$, for each pair of $i, j \in\{1,2, \ldots, k\}$.

Thorner's theorem is the case where $K=\mathbb{Q}$.

Summary

In summary:

- There are lots of pairwise non-commensurable arithmetic hyperbolic 2-manifolds with a great deal of overlap in their geodesic lengths.
- One might wonder if the volumes of these manifolds are getting further and further apart. We show that they are not.
- Our proof involves generalizing the work of Maynard-Tao and Thorner, and then translating it to a geometric setting.

Thank You!

