Lectures $4 \hat{\xi} 5$

Topics:

- Simultaneous representations of primes ty binary quadratic forms
a) Kaplanslcy
- A g-series from Ramanujan's Lost Notebooll and two papers
a) Andrews, Dy son, Huclcerson
b) Cohen
- An intro to quantum modular forms after zagier

$$
\begin{aligned}
& \text { Notation } \quad \infty \quad y \in \mathbb{C} \quad 0<|g|<1 \\
& (x)_{\infty}=\left(x_{j g}\right)_{\infty}=\prod_{i=0}^{\infty}\left(1-q^{i} x\right) \\
& j\left(z_{j}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} z^{n} g^{\binom{n}{2}} \\
& \text { JTPid }=\left(z_{j} q\right)_{\infty}\left(g\left(z_{j q}\right)_{\infty}\left(q_{j} j q\right)_{\infty}\right. \\
& J_{a, m}=j\left(q^{a} ; q^{m}\right) \\
& \bar{J}_{a, m}:=\bar{j}\left(-q^{a} j q^{m}\right) \\
& J_{m i}=\bar{J}_{m, 3 m}=\prod_{i=1}^{\infty}\left(1-q^{i m}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sg}(n):= \begin{cases}1 & n \geq 0 \\
-1 & n<0\end{cases}
\end{aligned}
$$

Underlying themes ξ^{\prime} questions

- Three field identities

Gauss
Serve
Andrews, Dyson, Hickerson Cohen

- You have a weight -one g-senes How do you go about relating the
Fourier Coefficients $c(n)$ in $\sum_{n=0}^{\infty} c(n) g^{n}$
to the sum of weights over representations of $a^{n}+b=x^{2}-d y^{2}$? How do you find $a, b, 2$?
How do you attach weights to the solutions?

Underlying themes $\{$ questions
For example (RLN)

$$
\begin{aligned}
\sigma(q) & :=1+\sum_{n=1}^{\infty} g^{n(n+1)(2} /(1+g)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right) \\
& =\sum_{n=0}^{\infty} S(n) q^{n} \\
& =1+q-q^{2}+2 g^{3}+\cdots+4 q^{45}+\cdots+6 g^{1609}+\cdots
\end{aligned}
$$

How do you obtain

$$
\left.\sigma(q)=\sum_{n=0}^{\infty}(-1)^{n} g(3 n+1) / 2(1-g)^{2 n+1}\right)_{j=-n}^{n}(-1)^{n}-j^{2} ?
$$

How do you know
$S(n)$ is the excess of the number of ineguivalent solutions of

$$
24 n+1=u^{2}-6 v^{2}
$$

with $u+3 v \equiv \pm 1$ (mod 12) over the number of them with $u+3 v= \pm 5(\bmod 12)$

Underlying themes \{questions When can we write a g-series a)

(B) $\left(\sum_{i \leq 0}+\sum_{r, s<0}\right)(-1)^{r+s} x^{r} y^{s} g^{a\left(\sum_{2}^{r}\right)+\operatorname{brs}+c\left(z^{s}\right)}$
(1) theta functions mock theta functions
(B) false theta functions

RUN's $\sigma(q)$ (Andrews, D, son, Dickerson)
(Cohen)
Q: What are the building block $\operatorname{lar}(B)$?

Underlying themes $£$ guestions
(A) Hedce-type double-sums

$$
\begin{aligned}
& \text { (B) }-\bar{r}) \begin{array}{r}
r+3 \\
\text { (B }
\end{array}\left(\begin{array}{l}
r \\
2 \\
2
\end{array}+b r s+c(\{)\right.
\end{aligned}
$$

$$
\begin{aligned}
& g_{a, b, c}(x, y, q):=\left(\sum_{r, s \geq 0}+\sum_{r, s<0}\right)_{(-c) x y}^{r} x y \\
& f_{1,2,1}(q, q, q)=J_{1}^{2}=\prod_{n=1}^{\infty}\left(1-y^{n}\right)^{2} \\
& f_{2,2,1}\left(q_{1}-q_{1}, g\right)=2 \bar{j}_{1,4} m\left(g_{1} q_{1}^{3},-1\right) \\
& g_{1,2,2}\left(q_{0}-g^{3}, q\right)=\sum_{n=-\infty}^{\infty} \operatorname{sg}(n)(-1)^{n} g^{n(n+1) / 2} \\
& g_{151}\left(-g_{1}-g_{1} g\right)-g^{2} g_{1511}\left(-q_{1}^{4}-q_{1}^{4}\right)=\sigma(q) \\
& \operatorname{sg}(n):=\left\{\begin{array}{c}
1 \\
n \geq 0 \\
-1 \\
n<0
\end{array}\right.
\end{aligned}
$$

Simultaneous Representations of primes
by binary quadratic forms Theorem (Kaplanolcy)
A prime $p, p \equiv 1$ (mod $\backslash 6 \backslash$ is representable by both or none of the quadratic forms $x^{2}+32 y^{2}$ and $x^{2}+6^{4} y^{2}$
A prime $p, p \equiv 9$ (modile) is representable by exactly one of the quadratic forms

$$
\begin{aligned}
& p=1 \text { (mod } 16) \quad \text { Examples } \\
& p=17,97 \text { nether } \\
& p=113=9^{2}+32 \cdot 1^{2}=7^{2}+64.1^{2} \\
& p \equiv 9(\bmod 16) \\
& p=41=3^{2}+32.1^{2}=n o n \\
& p=73=n 0 \\
& p=89=n o 3^{2}-164,1^{2} \\
& p=5^{2}+64.1^{2}
\end{aligned}
$$

Simultaneous Representations of primer
by binary quadratic forms
Theorem (kaplansky)
Aprime $p, p \equiv 1$ (mod $\backslash 6$) is representable by both or none of the quadratic forms $x^{2}+32 y^{2}$ and $x^{2}+16 y^{2}$
A prime $p, p \equiv 9$ (modile) is representable by exactly one of the quadratic forms

Python Code!
Cheder case

$$
\begin{aligned}
& p \equiv 1(\bmod l 6), p \text { prime, } p<10,000 \\
& p \equiv 9(\operatorname{modll}), p \text { prime }, p<10,1000
\end{aligned}
$$

A g-series from the Lust Notebook in the unsolved problem section of the American Mathematical Monthly (Nov 1986) George Andrews stated the following g-series found in Ramanujan's Lost Notebooks.

$$
\begin{aligned}
\sigma(q) & =1+\sum_{n=1}^{\infty} g^{n(n+1)\left(2 /(1+g)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right)\right.} \\
& =\sum_{n=0}^{\infty} S(n) g^{n} \\
& =1+g-g^{2}+2 g^{3}+\cdots+4 g^{45} t \cdots
\end{aligned}
$$

A g-series from the Lost Notebook

$$
\begin{aligned}
\sigma(q) & =1+\sum_{n=1}^{\infty} q^{n(n+1) / 2} /(1+q)\left(1+q^{2}\right) \cdots\left(1+q^{n}\right) \\
& =\sum_{n=0}^{\infty} S(n) q^{n} \\
& =1+q-q^{2}+2 q^{3}+\cdots+4 q^{45}+\cdots+6 q^{1609}+\cdots
\end{aligned}
$$

Andrews observed that the coefficients are slow to grow, for example no coeff of g^{n} for $n \leqslant 1600$ is greater than 4 in absolute value and he observed that the majority of $S(n)$ equal zero Table: fraction of $u \leqslant j$ with $S(n)=0$

j	100	200	\cdots	1000
fraction	0.44	0.475		0.562

A g-series from the Lost Notebook

$$
\begin{aligned}
\sigma(q) & =1+\sum_{n=1}^{\infty} q^{n(n+1) / 2} /(1+q)\left(1+q^{2}\right) \cdots\left(1+g^{n}\right) \\
& =\sum_{n=0}^{\infty} S(n) q^{n} \\
& =1+q-q^{2}+2 q^{3}+\cdots+4 q+\cdots+6 q^{45}+\cdots
\end{aligned}
$$

Python code!

- list of coefficients $c(n), n<10,000$

$$
-\forall m=1,2,3, \ldots
$$

What is $f(r \operatorname{st}$ a where $\mid S(n)]=m$?

- how does the following grow

$$
\operatorname{as~}_{N \rightarrow \infty ? N} \frac{H\{n \leq N \mid S(n)=0\}}{N}
$$

A g-sernes from the Lust Notebook

$$
\begin{aligned}
\sigma(q) & =1+\sum_{n=1}^{\infty} g^{n(n+1) / 2} /(1+q)\left(1+g^{2}\right) \cdots\left(1+g^{n}\right) \\
& =\sum_{n=0}^{\infty} S(n) \\
& =1+g-g^{2}+2 q^{3}+\cdots+4 g^{45}+\cdots+6 q^{160}+\cdots
\end{aligned}
$$

Andrews made the following two conjectures
Conjecture l: $\lim _{n \rightarrow \infty}$ sup $|S(n)|=t \infty$
Conjecture 2: $S(n)=0$ inf. many n.
Three people whole tack:
Dean Hickerson
Freeman Dyson
Henri Cohen

A g-series from the Los Nolebouk There are actually two functions in play here

$$
\begin{aligned}
& \sigma(q)=\sum_{n=0}^{\infty} g^{n(n+1)(2} /(1+g)\left(1+g^{2}\right) \cdots\left(1+g^{a}\right) \\
& \sigma^{*}(g)=2 \sum_{n=1}^{\infty}(-1)^{n} g^{n^{2}} /(1-g)\left(1-g^{3}\right) \cdots\left(1-q^{2 n-1}\right)
\end{aligned}
$$

Dyson:
This pair of functions $\sigma \xi \sigma^{*}$ is today an isolated curiosity. But Ism convinced that like somany other beautiful things in Ramanujan's Garden, it will turn out to be a special case of a broader mathematical structure ... within which the mock theta functions will also find place..

Three field identities (Notation)

Legendre Symbol
Let p bean odd prime number

$$
\left(\frac{a}{p}\right):=\left\{\begin{array}{cc}
1 & f \text { a is a quadratic res mod } p \\
-1 & f \text { a is a non residue mod } p \\
0 & \text { if } a=0 \quad(\bmod p)
\end{array}\right.
$$

Example) $\left(\frac{-1}{p}\right)=(-1)^{\frac{-1}{2}}=\left\{\begin{array}{cc}1 \text { if } p \equiv 1 & (\bmod 4) \\ -1,1 p \equiv 3 & \text { (mod } 4)\end{array}\right.$
b) $\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}=\left\{\begin{array}{lll}1 & 1 & p \equiv 1,7 \\ -1 & (\bmod 8) & p \equiv 3,5 \\ -\bmod 8)\end{array}\right)$
c) Fermat's two square theorem

$$
p=x^{2}+1^{2} \Leftrightarrow p \equiv \bmod 4\left[\cos \left(\frac{-1}{p}\right)=1\right]
$$

Three field identities (Notation)
Jacobi Symbol

- generalization of the Legendre Syputiol
- For any integer a and any positive integer n,

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{1 c}^{\alpha_{k}}
$$

The Jacobi Symbol is defined as the produd of the Legendre Symbols

$$
\left(\frac{a}{n}\right):=\left(\frac{a}{p_{1}}\right)^{\alpha_{1}}\left(\frac{a}{p_{2}}\right)^{\alpha_{2}} \ldots\left(\frac{a}{p_{k}}\right)^{\alpha_{k}}
$$

Threefield identities
Two types of threefleld identities Let $D \geqslant \frac{1}{₹} E$ be distinct square -free integers no equal to 1 and let F be the square-lree part of $D E$.
There is an identity between representations of odd integers n for which the Jacobi symbols

$$
\left(\frac{D}{n}\right)=\left(\frac{E}{n}\right)=\left(\frac{F}{n}\right)=1
$$

by quadratic forms associated with the fields
$Q(\sqrt{\Delta}), Q(\sqrt{E}), Q(\sqrt{F})$

Three field identities
Type I
The case $D, E_{1} F$ are all positue example
$\sigma(q) \quad D=2, E=3, F=6$ (later)
Type II
The case two of the integers say $D_{i} E$ ave regature and are say F is positive
example:
Kaplansky's Theorem (today)

Threefleld identities
Notation

$$
\begin{aligned}
& (x)_{\infty}=\left(x_{j g}\right)_{\infty}=\prod_{i=0}^{\infty}\left(1-\lambda^{i} x\right) \\
& j\left(x_{j} q\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} y^{\binom{n}{2}} x^{n} \\
& =\left(x_{i j}\right)_{\infty}\left(g_{j}\left(x_{j q}\right)_{\infty}\left(g_{j}{ }_{j}\right)_{\infty}\right. \\
& \bar{J}_{a, m i}=j\left(q^{a} j c^{m}\right) \\
& \bar{J}_{a, m}:=j\left(-q^{a} j c^{m}\right) \\
& J_{m}:=J_{m, 3 m}=\prod_{i=1}^{\infty}\left(1-q^{m i}\right) \\
& f_{a}, b, c(x, y, g) \\
& \therefore=\left(\sum_{r, s \geq 0}-\sum_{r_{1} s<0} \int_{(-1)}^{(-1) x y} \begin{array}{l}
\text { res } s \\
j
\end{array}\binom{r}{2}+b r s+c\binom{s}{2}\right.
\end{aligned}
$$

Three field identities
Type II (in more depth) Here the generating functions turn of to be theta functions and the identity is two theta functions expressed in terms of J's and a Hecke-type double-sum whose weight system depends on the region berry summed over

$$
\begin{aligned}
\varepsilon_{x} \quad D & =-1, E=-2, E=2 \\
J_{1,4} \bar{J}_{2,4} & =\bar{J}_{1,2} \bar{J} 1,4 \\
& =f_{1,3,1}\left(\begin{array}{lll}
3 / 4 & 3 / 4 & 1 / 2 \\
, \quad q & -g
\end{array}\right)
\end{aligned}
$$

Application: Kaplansky's Theorem!

Lecture so Par (Recap)

- introduced two sell of results
- Kaplansky's Theorem
- A g-serces from RLN ξ
conjectures of Andrews
- underlying themes $\{$ questions
- three field identities
- relating the Fourier coeffients of a g-series $\sum_{n=0}^{\infty} c(n) g^{n}$ to the solutions of a quadratic form $a n+b=x^{2}-d y^{2}$
- Hecke-type double-sums
- two types al symmetry
- building blocks

Simultaneous Representations of primes by Binary quadratic farms

- Kaplandey's Theorem
- understanding g-series

Steps:

- Avelated threefield identity
- Prove the threefield identity
- Threefield identity in terms of weighted solution sels lo quadratic forms
- Prove Kaplanslcy's Theorem using weighted solution self
- Confirm that the weighted solution sels give the generating functions found in the threefield identity.

Kaplansley's Theorem
Theorem (Kaplansky)
A prime $p, p \equiv 1(\bmod l l)$ is representable by both or none of the quadratic forms $x^{2}+32 y^{2}$ and $x^{2}+64 y^{2}$
A prime $p, p \equiv 9(\bmod)(6)$ is represcutalole by exactly one of the quadratic forms.
Proof (kaplanslcy)
Used two well-lonown results
a) Gauss

2 is a $4^{\text {th }}$ power modulo prime
\Leftrightarrow pu representable by $x^{2}+64 y^{2}$
b) Barvucand and Cohn

- 4 is an th power modulo prime $p \Leftrightarrow$ pis represtable $b y$
$x^{2}+32 y^{2}$

Kaplanslcy's Theorem
Notation

$$
\begin{aligned}
& (x)_{\infty}=\left(x_{j g}\right)_{\infty}=\prod_{i=0}^{\infty}\left(1-\lambda^{i} x\right) \\
& j\left(x_{j} q\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} y^{\binom{n}{2}} x^{n} \\
& =\left(x_{i j}\right)_{\infty}\left(g / x_{j q}\right)_{\infty}\left(g_{j}{ }_{j}\right)_{\infty} \\
& \bar{J}_{a, m i}=j\left(q^{a} j c^{m}\right) \\
& \bar{J}_{a, m}:=j\left(-q^{a} j c^{m}\right) \\
& J_{m}:=J_{m, 3 m}=\prod_{i=1}^{\infty}\left(1-q^{m i}\right) \\
& f_{a}, b, c(x, y, g) \\
& \therefore=\left(\sum_{r, s \geq 0}-\sum_{r_{1} s<0} \int_{(-1)}^{(-1) x y} \begin{array}{l}
\text { res } s \\
j
\end{array}\binom{r}{2}+b r s+c\binom{s}{2}\right.
\end{aligned}
$$

Prool of Kaplansky's Theorem preliminaries

Three field

$$
\left.\begin{array}{rl}
J_{1,4} \bar{U}_{2,4} & =\bar{J}_{1,2} \bar{J}_{1,4} \\
& =f_{1,3,}\left(\begin{array}{lll}
3 / 4 & 3 / 4 & 1 / 2 \\
q & 1
\end{array}\right) \\
,-q
\end{array}\right)
$$

dentity between represenlations of odd intejers n for whech the Jacohi Symhols

$$
\left(\frac{D}{n}\right)=\left(\frac{E}{n}\right)=\left(\frac{E}{n}\right)=1
$$

by guadratic forms assodeated with the fields $Q(\sqrt{D}), Q(\sqrt{E}), Q(\sqrt{F})$

Proof of Kaplansky's Theorem preliminaries

$$
\begin{aligned}
J_{1,4} \bar{J}_{2, n} & \left.=J_{1,2} \bar{J}_{1,4}=f_{1,3,1} \mid q_{1}^{3 / 4} 1^{3 / q} q^{1 / 2}\right) \\
& =1-q-2 q^{2}+q^{3}+2 q^{5}+q^{6}-2 q^{2}+\cdots \\
& =: \sum_{n=0}^{\infty} c(n) q_{n}
\end{aligned}
$$

We can relate $c(n)$'s to the solution sels of three different quadratic forms:

$$
\begin{array}{ll}
8 n+1=x^{2}+y^{2} & d=-1 \\
8 n+1=x^{2}+2 y^{2} & d=-2 \\
8 n+1=x^{2}-2 y^{2} & d=2
\end{array}
$$

general form $a n+b=x^{2}-d y^{2}$

Prool of Kaplansky's Theorem
Proof of threefleld identity

$$
\left.\begin{array}{l}
\text { root of three Field identity } \\
J_{1,4} \bar{J}_{2,4}=J_{1,2} J_{1,4}=f_{1,3,1}\left(g_{1 / 4}\right. \\
1
\end{array} q_{1}, 1-q\right)
$$

First equality follows from a product rearvanjemenil
Second equality follows from an fable ($x, y, q)$ expansion

Proof of Kaplanslcy's Theorem
Proof of threefield identity
Proof of first equality

$$
J_{1,4} J_{2,4}=J_{1,2} \bar{J}_{1,4}
$$

Notation $\left.\left(x_{j}\right)_{\infty}\right)_{i=0}^{\infty}\left(1-q^{i} x\right)$

$$
\begin{aligned}
& J_{a, m}=j\left(g^{a} j q^{m}\right) \\
& \bar{J}_{a, m}=j\left(-g_{m} ; g^{m}\right)
\end{aligned}
$$

Jacobi Triple Product Id.

$$
j(x ; g)=(x ; g)_{\infty}(g \mid x j g)_{\infty}(g ; g)_{\infty}
$$

Examples of Product Rearrangements

$$
\begin{aligned}
(q j q) 00 & =(1-g)\left(1-g^{2}\right)\left(1-g^{3}\right)\left(1-y^{4}\right)\left(1-g^{5}\right) \cdot \\
& =(1-g)\left(1-g^{3}\right)\left(1-g^{5}\right) \cdots\left(1-y^{2}\right)(1-g) \cdots \\
& =\left(g ; g^{2}\right) \infty \quad\left(g^{2}{ }^{2} g^{2}\right) \infty \\
& \pi
\end{aligned}
$$

Prool of Kaplansky's Theorem
Prool ol threefield ideutity
Examples of Produd Rearransements:

$$
\begin{aligned}
& \text { Ex: } \quad\left(g^{2} j^{4} y^{4}\right)_{20}=\left(1-y^{2}\right)\left(1-y^{6}\right)\left(1-y^{10}\right)\left(1-g^{24}\right) \cdots \\
& =(1-g)\left(1+g^{\prime}\right)\left(1-y^{3}\right)\left(1+g^{3}\right)\left(1-y^{5}\right)\left(1+y^{5}\right)- \\
& =\left(1-q_{q}\right)\left(1-q^{3}\right)\left(1 q^{5}\right)-\cdots(1+q)\left(1+q^{3}\right)\left(1+g^{5}\right) \\
& =\left(g_{j} y^{2}\right)_{\infty}\left(-g j g^{2}\right)_{\infty}
\end{aligned}
$$

In general

$$
\left(g^{2 a} \text { ig }\right)_{\infty}=\left(\begin{array}{ll}
a^{m} \\
g^{m} & \text { ig }
\end{array}\right)_{\alpha}\left(\begin{array}{cc}
a^{m} & g^{m}
\end{array}\right)_{\infty}
$$

abave is $a=1, m=2$

Proof of Kaplansky's Theorem
Proof of threefleld identity
First equality $J_{1,4} J_{2,4}=\bar{J}_{1,2} \bar{J}_{1,4}$

$$
\begin{aligned}
& J_{1,4} J_{2,4} \\
& \text { = use Tacohi Triple Product Identity }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(g_{j} y^{2}\right)_{\infty}\left(g^{4} i y^{4}\right)_{\infty}\left(g_{j}^{2} j y^{4}\right)_{00}^{2}\left(g_{j}^{4} i y^{4}\right)_{00} \\
& =\left(g j g^{2}\right)_{00}\left(g_{j}^{2} j^{2}\right)_{00}\left(g^{2} j q^{4}\right)_{00}\left(g^{4} j q^{4}\right)_{00} \\
& =\left(g_{i} g^{2}\right)_{\infty}^{2}\left(g^{2} j g^{2}\right)_{\infty}\left(-g_{j} j^{2}\right)_{\infty}\left(g^{4} i{ }^{4}\right)_{00} \\
& =J_{1,2}\left(-g_{j} y^{4}\right)_{\infty}\left(-g^{3} j y^{4}\right)_{\infty}\left(g^{4} j{ }^{4}\right)_{\infty} \\
& =\bar{J}_{1,2} \bar{J}_{1,4}
\end{aligned}
$$

Prool of Kaplansky's Theovem Proul of threefield identity
Notation

$$
\begin{aligned}
& (x)_{\infty}=(x ; q)_{\infty}=\prod_{i=0}^{\infty}\left(1-q^{i} x\right) \\
& j\left(z_{j q}\right)=\sum_{n=-\infty}^{\infty}(-1)^{n} z^{n} g \\
& \left.=(z j q)_{\infty}\left(g / z_{j q}\right)_{\infty}\left(q_{j}\right)\right)_{\infty} \\
& J_{a, m i}=j\left(g^{a} ; y^{m}\right) \\
& \bar{J}_{a, m}:=j\left(-g_{j} ; q^{m}\right) \\
& \bar{J}_{m}:=\bar{J}_{m}, 3 m=\prod_{i=1}^{\infty}\left(1-q^{i m}\right) \\
& m(x, g, z):=\frac{1}{j(z-q)} \sum_{n=-\infty}^{\infty} \frac{\left.(-1)^{n} g^{n} \frac{n}{2}\right)^{n}}{1-g^{n-1} \times z}
\end{aligned}
$$

Prod of Kaplansly's Theerem
Prool of threefield identity
Prool of secoud equality (skelch)

$$
\begin{aligned}
& J_{1,2} \bar{J}_{1,4}=f_{1,3,1}\left(g^{3 / 4},-q^{3 / 4},-q^{1 / 2}\right) \\
& f, \beta, 1(x, y, q)=j(y, g) m\left(-q^{5} x / y^{3}, \lambda^{8}, y / x\right) \\
& +j\left(x_{j} \text { q }\right) m\left(-g^{5} y / x^{3}, g^{8}, x(y)\right. \\
& -{ }_{-g x y} \frac{J_{2,4} J_{8,14} j\left(g^{3} x y i g^{8}\right) j\left(g^{4} x^{2} y^{2} j g^{14}\right)}{j\left(-g^{3} x^{2} j y^{8}\right) j\left(-g^{3} y^{2} \dot{8} y^{8}\right)} \\
& f_{1,3,1}\left(g^{3 / 4},-\lambda^{3 / 4},-g^{1 / 2}\right)=\cdots \\
& =\ldots=J_{1,2} \bar{J}_{1,4}
\end{aligned}
$$

Proof of Kaplansley's Theorem
The first equality $J_{1,4} \bar{J}_{2,4}=\bar{J}_{1,2} \bar{J}_{1,4}$ gives Kaplansky's Thu

The first equality 7 gives a relationship between solutions to

$$
x+1=x^{2}+y^{2}
$$

and solutions to

$$
81 c+1=x^{2}+2 y^{2}
$$

Proof of Kaplansky's Theorem

$$
J_{1,4 J_{2,4}}=J_{1,2} \bar{J}_{1,4}=\sum_{n=0}^{\infty} c(n)_{n}^{n}
$$

First equality says $8 k+1=x^{2}+y^{2}: F(x x>0$. The coff $c(k)$ is the excess of the number of inegucvalent solus with

$$
\begin{equation*}
x \equiv \pm 1(8), y \equiv 0 \text { (8) or } x \equiv \pm 3(8) y \equiv 4 \tag{c}
\end{equation*}
$$ are the number of ineguivalent soluswith $x \equiv \pm 3(8) y \equiv 0(8)$ or $x \equiv \pm 1(8) y \equiv 4(0)$. $8 k+1=x^{2}+2 y^{2}$ Here x odd yeven. The corf $c(k)$ is the number of inequivaleul solus with $y \equiv 0(u)$

over the number with

$$
y \equiv 2(4)
$$

Proof of ICaplansky's Theorem
The (Kaplansky)
Aprime $P_{1} ? \equiv 1$ (mud le) is representable $b y$ both or none of the quadratic forms $x^{2}+32 y^{2}$ and $x^{2}+64 y^{2}$
A prime pr $p \equiv 9$ (mo dlr) is representable by exactly one of the quadratic forms

Pool follows from previous relationship. que stan: how?
bigger question:
In $a n+b=x^{2}-d y^{2}$, how do cere find a, b, d, an λ how do we find the weights?

Proof of Kaplanslcy's Theorem
With a simple change of variables we Can rewulle the weights of solutions of $8 k+1=x^{2}+y^{2}$ and $8 k+1=x^{2}+2 y^{2}$ in terms of the weights of solutions of $8 \mid c+1=x^{2}+16 y^{2}$ and $8 k+1=x^{2}+8 y^{2}$

We can rewrile the weighted soln gels accordingly

Proof of Kaplansky's Theorem The excess of the number of ineguivalent solus of $8 k+1=x^{2}+16 y^{2} \quad(x>0)$ with

$$
x \equiv \pm 1(8) \text {, yeven or } x \equiv \pm 3(8) \text { yod }
$$ over $x \equiv \pm 3(\varepsilon)$, yeven or $x \equiv \pm 1(\varepsilon)$ yod equals

the number of excess solus of

$$
\theta\left(c+1=x^{2}+8 y^{2} \quad(x>0)\right.
$$

with
yemen
over
yod.

$$
J_{1,4} J_{2,4}=J_{1,2} \overline{J_{1,4}}=: \sum_{n=0}^{\infty} d(n)_{g}^{n}
$$

Prool of Kaplansky's Thearem
So. $f \quad p=8 \backslash c_{t} \backslash \quad \imath$ prime
there ase exactly two representations by each of these farms $(y \rightarrow-y)$
if $p \equiv 1(\bmod$ e) is prime, the p's unigue form $x^{2}+16 y^{2} \quad(x>0)$
ha) $x \equiv \pm 1$ (\&) yeven or $x \equiv \pm 3$ (\&) yodd iff p's unigue repuesentation $x^{2}+8 y^{2}$ $(x, y z 0)$ has yeven
ilf phas arepresentation of the form

$$
x^{2}+32 y^{2}
$$

Proof of Kaplansky's Theorem
I) p prime $p \equiv 1(\bmod 16)$ is representable by both ar none of the quadratic forms $x^{2}+32 y^{2}$ and $x^{2}+64 y^{2}$
Proud
$P \equiv 1(\bmod \backslash k)$
In the representation $p=x^{2}+16 y^{2}$ we must have $x \equiv \pm 1$ (mod 8$)$.
Thus p^{\prime}, representation in this form has y even \Leftrightarrow
p has are presentation of the form

$$
x^{2}+3 z y^{2}
$$

II) similar.

Big Questions remaining

1) If are knows the generating fur.

$$
\bar{J}_{1,4} \bar{J}_{2,4} \text { or } \bar{J}_{1,2} \overline{\bar{J}}_{1,4}
$$

how due, one find aisle is

$$
a n+b=x^{2}-d y^{2}
$$

and the weight system?
2) If are just has a g-sevies how does one find ab id? how does one fund the weight system? how does one go from the weigh system to the generating fins?

Basie Questions

1) We have generatury Ins.

How do we find a bid in

$$
a n+b=x^{2}-d y ?
$$

How do we find the weight system?
For a theta function $f(q)$ (and many $f u s$) there is an associated fractional opponent λ such that $g^{\lambda} f(g)$ is in someways simpler than $f(\mathrm{~g})$, Modularity properties are easier to state. The λ for both $J_{e, m}=j\left(g^{e} i g^{m}\right)$ and $\bar{J}_{e, m}=j\left(-g_{j}^{e} q^{m}\right)$ is $\lambda=(m-2 e)^{2} / 8 m{ }^{\prime \prime}=4 / b$

Basic Questions

1) we can find a, b. How do we find d ?
$\ln J_{e_{1}, M_{1}} \cdot J e_{2}, m_{2}$
(ar with J's.)
$d=$ - syuare-free pact of $M_{1} \cdot M_{2}$
Examples

$$
\begin{aligned}
& J_{1,4} \bar{J}_{2,4} \\
& \lambda=\frac{(4-2 \cdot-1)^{2}}{8 \cdot 4}+\frac{(4-2 \cdot 2)^{2}}{8 \cdot 4}=\frac{1}{8} "=\frac{a}{b} \\
& d=-(\text { square -free } 4 \cdot 4)=-1 \\
& 8 n+1=x^{2}+y^{2}
\end{aligned}
$$

what about weights?

Basic Questions

1) Examples

$$
\begin{aligned}
& \bar{J}_{1,2} \bar{J}_{1,4} \\
& \lambda=\frac{(2-2-1)^{2}}{8 \cdot 2} \times \frac{(4-2.1)^{2}}{8 \cdot 4}=\frac{1}{8}=\frac{a}{b} \\
& d=-(\text { square-free part } 2-4)=-2 \\
& 8 n+1=x^{2}+2 y^{2}
\end{aligned}
$$

what about the werfuts?

Base Questions

1) Examples

Python Code!
Should we assume a हे b are in lowell terms? No
$J_{2} J_{3,12}$ (actually $J_{2,6} J_{3,12}$)

$$
\lambda=\frac{(6-2.2)^{2}}{8.6}+\frac{(12-3.2)^{2}}{8.12}=\frac{4}{8.6}+\frac{36}{8.12}
$$

$$
=\frac{1}{12}+\frac{3}{8}=\frac{11}{24}
$$

$d=-$ syuare-lree part $612=-2$
$24 n+11=x^{2}+27^{2}$ has no solus
$48 n+22=x^{2}+2 y^{2}$ does have solus

Basic Questions

1) We have the generating firs how do we find a, b, d in $a n+b=x^{2}-d y^{2}$ how do we find wergul system? how do we show weight system glues the generating fur?
2) same questions but we only start couth a weight one g-series

Basic Questions

1) Given generation function $J_{1,2} \bar{J}, 4=\sum_{n}^{\infty} c(n){ }^{n}$ we suspend the Fourier Coefficients $n=0$ $C(n)$ are related to the solutions of $\quad 8 n+1=x^{2}+2 y^{2} \quad(d=-2)$ We suspend we are county ares weiguled solutions.
How do we find the weeflls?
Find n such that

$$
8 n+1=p \text { aprime number }
$$

and $c(n) \neq 0$

Basic Questions
1)

$$
\begin{aligned}
\sum_{n=0}^{\infty} c(n) & =J_{1,2} \bar{J}, 4 \\
& =1-q-2 g^{2}+y^{3}+2 q^{5}+y^{-2} g^{t}
\end{aligned}
$$

Find $n, \quad 8 n t=p$ prime, $\quad c(n) \neq 0$
Note that these are primes p where $\left(d{ }_{p}\right)=1, \quad\left(\frac{-2}{p}\right)=1$ Examples (only listing $x>0$)

$$
n=2, c(2)=-2 \quad 8 n+1=17
$$

Tolu's $(3,-2)(3,+2)$ each -1

$$
n=5 \quad c(5)=2 \quad 8 n+1=41
$$

sola's $(3,-4)(3,4)$ each t

$$
n=9 \quad c(a)=-2 \quad 8 n+1=73
$$

solus $(1,-6) \quad(1,6)$ each -1

$$
n=11 \quad c(11)=-2 \quad 8 n+1=89
$$

solus $(9,-2)(9,2)$ each -1

Basic Questions

1) $\sum_{n=0}^{\infty} c(n)=\bar{J}_{1,2} \bar{J}_{1,4}$

$$
=1-g-2 g^{2}+g^{3}+2 g^{5}+y^{6}-2 g^{t}+
$$

Find $n, \quad 8 n+1=p$ prime, $\quad c(n) \neq 0$
Note that theseare primes p where $\left(d(p)=1,\left(\frac{-2}{p}\right)=1\right.$
Examples Sonly listing $x>0$) Python code!
what happens when we don't restrict ourselves to cases $a n+b=p r i m c, c(n) \neq 0$?

Basic Questions

1) $\begin{aligned} \sum_{n=0}^{\infty} c(n) q_{d}^{n} & =\bar{J}, 2 \bar{J} \\ & =1-q-2 q^{2}+q_{1}^{3}+2 q^{5}+q^{6}-2 q+\cdots\end{aligned}$ building up weiful system go from weigulsytem to theta fur hook for a pattern

- Fud n, \quad entl=p prime, $\quad c(n) \neq 0$ make a list of the solutions
These are $\left.p, C^{-2} / p\right)=1$
- Far $p_{1} \quad c-2(p)=-1$
we look for $n, 8 n+1=p_{c}^{2} c(n) \neq 0$

$$
n=3 \quad c(3)=1 \quad 8 n+1=25
$$

sulu $(5,0)$ at 1
$n=6 \quad c(\varepsilon)=1 \quad 8 n+1=49$
solus $(7,0)$ wt 1

Basic Questions

1) $\sum_{n=0}^{\infty} c(n) g^{n}=J_{1,2 \bar{J}}^{1,4}$

Buildiy up weigh system
Gory from weigh l systen to the a fus.

$$
n=2 \quad c(2)=-2 \quad 8 n+1=17
$$

solus $(3, \pm 2)$ each wt -1

$$
n=5 \quad c(5)=2 \quad 8 n+1=41
$$

Solus $(3, \pm 4)$ each ut $t 1$
how does ahrave relale to solus to $n=87 \quad c(87)=-4 \quad 8 n+1=17.41=697$ $\left.\begin{array}{l}(7,+18),(7,-18) \\ (25,+|6|,(25,-16)\end{array}\right\}$ each weight -1 Solus ξ werfuls multiply.

Busle Questions

$$
\begin{aligned}
& \text { 1) } \begin{aligned}
p & =x^{2}+2 y^{2} \quad q \\
17 & =u^{2}+2 v^{2}
\end{aligned} \\
& p=(x-\sqrt{-2} y)(x+\sqrt{-2} y) \quad x=3, y=2 \\
& g=(u-\sqrt{-2 v})(u+\sqrt{-2} v) \quad u=3, v=4
\end{aligned}
$$

nole we activally have $\pm y, \pm y, \pm u, \pm v$ -
consider permutatims for pg

$$
\begin{aligned}
& p q=[(x-\sqrt{-2 y})(u-\sqrt{-2} v)] \\
& =[x u-2 y v-\sqrt{-2}(x v+y u)] \\
& \quad[x+\sqrt{-2} y)(u+\sqrt{-2 v})] \\
& =[9-2 \cdot 8-\sqrt{-2}(12+6)] \\
& =(-z-\sqrt{-2} \cdot 10) \cdots
\end{aligned}
$$

Basic Questions

1) Back to list of n, where

$$
\begin{aligned}
8 n+l & =p \text { a prime, } c(n) \neq 0 \\
n=2 \quad c(2) & =-2 \quad p=17
\end{aligned}
$$

Sons $(3, \pm 2)$ each waghl -1

$$
n=5 \quad c(5)=2 \quad p=41
$$

solus $(3, \pm 4)$ each weight $t 1$ $n=9 \quad c(a)=-2 \quad p=73$
solus (1, $\pm 6)$ each werghl-1 :
Pattern: Here $8 n+1=x^{2}+2 y^{2}$ x is odd, yeven. The corf $c(n)$ is the excess of the number of meguivalent solus of $8 n+1=x^{2}+2 y^{2}$ with $y \sum 0$ mod aver those with $y \equiv 2 \bmod 4$.

$$
a n+b=x^{2}+2 y^{2}
$$

Basic Questions $n=\left(x^{2}+2 y^{2}-b\right) / a$

1) How do we go from our guess al the weigh system to our generating function

$$
\sum_{n=0}^{\infty} a(n)_{q}^{n}=J_{1,2} \bar{J}_{1,4}
$$

$c(u)$ is number of ineque solus of $8 n+1=x^{2}+2 y^{2}$ with $q \equiv 0(\bmod u)$ over those with $y \equiv 2(\bmod 4)$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c(n) y=\frac{1}{2} \sum_{r_{i} s} g^{\left.\left[(2 r+1)^{2}+2(4)\right)^{2}-1\right] / 8} \\
& -\frac{1}{2} \sum_{r_{i} s} g^{2}\left[(2 r+1)^{2}+2(4 s+2)^{2}-1\right] / 8 \\
& \text { exponent is } n .
\end{aligned}
$$

Basic Questians

$$
\begin{aligned}
& \sum_{n=0}^{\infty} c(n) q^{n}=\frac{1}{2} \sum\left[(2 r+4)^{2}+2(4 s)^{2}-1\right] / 8 \\
& \sum_{n=0}^{\infty} c(n) y^{n}=\frac{1}{2} \sum_{r_{i s}} q^{n} \\
& -\frac{1}{2} \sum g^{\left[(2 r+1)^{2}+2(4 s+2)^{2}-1\right](8)} \\
& =\frac{1}{2} \sum_{r_{1} s}(-1)^{s} \dot{g}_{x}^{\left[(2 r+1)^{2}+2(2 s)^{2}-1\right] / 8} \\
& =\frac{1}{2} \sum(-1)^{s} g^{r^{2} / 2+r 12+s^{2}} \\
& =\frac{1}{2} \sum g^{\binom{r}{2}+r} \cdot \sum(-1)^{s} g^{s} g^{2\binom{s}{2}} \\
& =\frac{1}{2} \sum_{r} g \cdot \sum_{s}(-4) g g \\
& =\frac{1}{2} \sum_{r}(-1)^{r}(-g)^{n} g^{\binom{n}{2}} \sum_{s}(-1)^{s} g^{s} g^{2\binom{s}{2}} \\
& =\frac{1}{2} \bar{J}_{0,1} J_{1,2}=\bar{J}_{1,4} \bar{J}_{1,2}
\end{aligned}
$$

Summary
Two problems

- Kaplanslcy's Theorems 's Simultaneous r presentations of primes by binary quadratic forms
- A g-serces from RLN two conjectures of Andrews
Underlying themes and questions
- Three field identities
- Relating Founder coefficients of g-series to binaryguadratic forms
- Two types al teclee-type
double sums
Procl of Kaplansky's Theorem

Next time Lecture 5

- Ag-serces from the Lusi Notebade 6 (7)
Andrews, Dessan, Itcellerson Cohen
- intro to quantum modular formy
(7agies, Fol>om)
- underlying themes's questions
- threefield cdentictres
- relatinj Fourier coelfcienls ola g-seres to the solutions of a guadratic form(s)
- Hedke - type double-sums and thenr building blocks

Andrews, Dyson, Hickerson
Partitians and iudefinile guadratic Parms
Inv. Math 19888
C.F Gauss

Theorie des biguadratischen Redre, I Cohen
q-identities and Maass Wave forms luv Filath 1988

Kaplanslicy
The forms $x+32 y^{2}$ and $x+64 y^{2}$ froc AMS 2003
Martenson
Threpfield dentities and oumultaneous rpresentations of primes by quaduaticforms J Number Theary 2013
Serve
Modular famsol weynt one and Galols representations 1977

Andreurs
Partitcons with distind evens 2009 Corson, Faveru, Leisinger, Zubairy Characters and g-series in $Q(\sqrt{2})$ J, Number Theory ZouY

