


Lectures 4 { 5

Topics 8

- Simultaneous representations of

primes by binary quadratic forms
a) Kaplansky

- A
g
- series fromRamanujan's

Lost Notebook and two papers
a) Andrews

,Dyson ,
Hickerson

b) Cohen

- An intro to quantum modular
forms after Zagier
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Underlying themes { questions
• Three field identities

Gauss
Serre
Andrews

,Dyson , Hickerson
Cohen

• You have a weight - one of
-series

How do you go about relating the
Fourier Coefficients ccul in
• n

E ccnlq
NEO

to the sum of weights over
representations of an-cb=xZdy2 ?
How do you find a ,b , d?
How do you attach weights
to the solutions?



Underlying themes § questions
For example CRLN)

scql HIE
,
g
"""

quiet . -CHI)
D n

= 2- Scut of
n=o

= leg -g? Hope . - - x4q"I . . - tag'¥
?

How do you obtain

oq.hn?Eoaiq'
""' ka.IT?Inaig-i?

How do you know

Sen) is the excess of the number
of inequivalent solutions of
24N +I = U2- GU2

with Ut 325=11 (mod 127 over

the number of them with 2
Ut30II 5 (Mod 12) u



Underlying themes { questions
when can we ante a q- series as

" I 4¥
.

-¥.) c- iitsxrysgacnltbrstc
"" 4¥

.

+ E) cnn.xnysqakksrs.ie
( s) theta functions

mock theta functions
(B) false theta functioning
RCN's G Cq) ( Andrews

, Dyson ,Hickerson)
( Cohen)

Q : what are the building block ear (B) ?



Underlying themes { questions
(A)

Hecke - type double - sums
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Simultaneous Representations of primes
by binary quadratic forms

Theorem (Kaplansky)
A prime p , pzl Cmdd 161 is representable

by both or none of the quadratic forms
x't 3272 and xI64y2
A prime p ,

pZ9 Cmo duel as representable
by exactly one of the quadratic forms
- o-

PEI Cmod ke) Examples
p
= 17,97 neither

p= 113=92+32 . 12 = 72+64.12

PET (mod 16 )

p= 41 = 32T 32 . 12 = no

pie 73
= no = 3464,12

p=89= no = 52+64 . I
2



Simultaneous Representations of primes
by binary quadratic forms

Theorem CKaplansky)
A prime p , pII Cmdd 161 is representable

by both or none of the quadratic forms
x't 3272 and x 2+1642
A prime p , PZ9 Cmo duel as representable
by exactly one of the quadratic forms
- o-

Python Code!
Check case

p El Cmod 161 , p prime , PC 19000

pE9 (mod161 e p prime , pc 141000



A q
-series from the Lost Notebook
- o-

In the unsolved problem section of the

American Mathematical Monthly ( Nov 1986)

George Andrews stated the following
of-series found in Ramanujan's Lost
Notebook .

oy.me an
""

+ aegis . . - aqil
N n
= -2 Scaly
neo

= leg-424243 eco - t 4qWe - -



A q- series from the Lost Notebook
- o-

oakHEI gi"-""Yay,aegis . . -City)
n

= I sang
n-O

= leg- q2 +2g? -c - - -c 4g?I -- +641699.-
Andrews observed that the coefficients

are slow to grow ,
for example no coeff

of
q
"

far as 1600 is greater than 4
in absolute value and he observed that

the majority ol Sca) equal zero
Table : fraction of aEj with Scut- O

je.at#fo:EE:



A q- series from the Lost Notebook
- o-

oak HEE
,
of
"-""Yay,aegis . . -City)
n

= I sang
n-O

= leg- of +2g? -c - - t 4g?I -- +64k¥
- o
-

Python code ?
- list of coefficients ccul

,
nayooo

- VM = 1,2
,
3
,
-
-

what is first n where I Scn ) f- in?

- how does the following grow
⇒ En EN / Slu) --o}
I

N
as N -so ?



A
q- series from the Lost Notebook

ng.ru Ei
,
g.
""'

Ying, aegis .- Hail
a

= E Scn)
NEO

= Hq - g42q3e . - +4g
'

- - t 6g,HII

Andrews made the followingtwo
conjectures

Conjecture l: Inez
, •

suplscnl f- too

Conjecture 2 : Senko in f . many n .

Three people wrote back !

Dean Hickerson

FreemanDyson
Henri Cohen



A q-series
from the Lost Notebook
-o -

There are actually two functions in

play here

scan :& an
"

"%⇒a⇒y . . - a.y.at
sx-qr.IE

, tianya.g.ia.g.si .- HEY
Dz son 8

This pair of functions or } 5* is today
an isolated curiosity .But I am convinced

that like so many other beautiful things
in Ramanujan's Garden ,

it will turn

out to be a special case of a broader

mathematical structure een within

which the mock Theta functions
well also find a place . -

.



Three field identities ( Notation)
-o-

Legendre Symbol
Let p be an odd prime number

( app ) :-/
' 'f a 's a quadratic res mod p

-

-l if a is a non residue mod p
O of azo (mod p)

Example '

al ( Ip) -- C- y =/
lil PII Canada)

-l al p =3 Corrody)

b) ( f) - fi) P¥=f ' il Petit anode)-l if p =-3 ,5 (Mod 8)

c) Fermat 's two square theorem

f- x't y
'

⇐ pet mod 4 @ (Ip ) =/ )



Three field identities C Notation)
- o -

Jacobi symbol
• generalization of the Legendre Symbol
• For any integer a and any
positive integer n ,
n=p ,

d' PEZ -- pick

The Jacobi Symbol is defined as
the product ol the Legendre Symbols
Ente Y ' #K . . - faze)dk



Three field identities
- o
-

Two types of three field identities
Let D { E be distinct square

-free

integers not equal to 1.and let F be the
square - free part of DE .

There is an identity between
representations of odd integers n
for which the Jacobi symbols
( El --CEI -- CEI - I

by quadratic forms associated with
the fields

Q Crist
,
Q Cre )

,
Q ( ft )



Three field identities
- o -

Type I

Thetas D
,Eef are all positive

example
o Cq) D= 2

,
E-3

,
F=6 ( later )

Type I
Tease two of the integers
say D.E are negative and are
say F Cs positive
example ,
Kaplansky is Theorem (today)



Three field identities
Notation

( x)-=

cxjqloe-IIoce-qscljcxig.tn?Ie-igMxn--CxiqlooCglxiqla
( qigloo

Jam:- jcgajq )
Fa

,
m :
-

- jfqajqm)
Jm:=Tmism = II

,

Cl - Ini )

faisiccxihq)
" ¥

.

- E.oluiesxrysqakkbrs.ie



Three field identities
-o-

Type I can more depth)
Here the generating functionsturn out
to be theta functions and the

identity is two Theta functions

expressed in terms of J 's and
a Hecke - type double -sum whose

weight system depends onthe region
being summed over
Ex D= - l

,
E -- -2

,
F=2

Ji
, 4 Jay = J 42Thy

=L .sn Cg?
"

.
-

g
"

.
-

g
" )

Application : Kaplansky 's Theorem !



Lecture so far ( Recap)
• introduced two sets of results

-Kaplansky's theorem

- A g - series from
RLN }

ceryeotures of Andrews

• underlying themes { questions
- three field identities

- relatingthe Fourier coefficients
in n

ol a q- series 2- ccnlq
N=0

to the ' solutions of a

quadratic form ant b=xIdy2
- Hecke - type double - sums

- two types ol symmetry
- building blocks



Simultaneous Representations of primes
byBinary quadratic farms

- Kaplansky 's Theorem
- understanding q- series
steps %
- A related three field identity
- Prove the three field identity
- Three field identity in terms of

weighted solution sets to quadratic forms
- Prove Kaplansky 's Theorem using
weighted solution sets

- Confirm that the weighted solution
sets give the generating functions
found in the three field identity .



Kaplansky's Theorem

Theorem :C Kaplansky)
A prime p , PII Cmodlle) is representable
by both or none of the quadratic forms
X't 32>2 and x4 6442
A prime p , p=9 (mod 16 ) is representable
by exactly one of the quadratic forms .

Prod (KaplanskyI
Used two well- known results

a) Gauss

Z is a 4th power modulo prime p

⇐ pls representable by xZ64y2
b) Baru u cand and Cohn

-4 is an 8th power modulo

prime p ⇐ p is reputable by
743272



Notation
Kaplansky's Theorem

(

xlat-cxjqloe-IIoce-qscljcxig.tn?Ie-igMxn--CxiqIooCg/xs-qlaocqiqla
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Proof of Kaplansky's Theorem

preliminaries
- o -

Three field

Ji
,yJz ,y =Ji ,2Fyy

= e.mg.
"

: .,
"

.
.

,
")

D= -l , E = -2 , F=2

identity between representations
of odd integers n for which the
Jacobi symbols
CE KAE l -- CE 1=1
by quadratic farms associated

with the fields

Q ( Rs )
,
QCFE )

,
④ CRE )



Proof of Kaplansky's Theorem
preliminaries
- o-

JinJun-- Tire,y=f , .sn/q3Y-q3H ,
-

g

"")
= I-g

-2g? -1g? 4245g! -2g!t - -
- n

= & I ccnlq
n=o

we can relate carl 's to the solution

sees ol three different quadratic
farms :

8nel= x'e y
'd D= - I

dont 1=64242 D= -2

8ntl= £-242 D= 2

general form an -cb= x'- dy
'd



Proof of Kaplansky's Theorem

Proof ol three held identity
J
. ,uJzm= JimFey=L ,z, Cg,

""

,
-

q"Y-q"2)
First equality follows from a

product rearrangement
Second equality follows from an
Laine Gay .gl expansion



Proof of Kaplansky's Theorem

Proof of three field identity
Procol ol first equality
Jim Jay = JuzFun
Notation cxig.la?Ioh-qix )
Jane jcqajqm )
Faire je- ga ;qm )
Jacobi Triple Product Id .

jcxigt-cxiqloolqlxjqloocqiq.ae
Examples ol Product Rearrangements

cqo-qbotl-qla-qla-qlll-gjya-gt-a-ykl-gfsa-g.si) -- CI -gyu-q
") . -

-

- Cg ;y4ao Cgi igloo
or a

odd power evenpowers



Proof of Kaplansky'sTheorem

Procol ol three field identity
Examples of Product Rearrangements :

Ex : cqs-y4bi-a-q44-qlh-g.io) CI -q"Y . - -
-

- Ce -qlciegdltq ) City) (l-gskltyl-a-qla-qlh-qt-A-y.lk/lAtg5t---Cq;q2laC-qjq4o
in general
eoiaignhehiigiktii:b
above is a=L - M

-
- 2



Proof of Kaplansky's Theorem
Proof of three field identity

g.

First equality Jimi,u=JyzFyu

1,4The
=
use Jacobi Triple Product Identity

Z

-

- cqsgikolg.iq/aolgY;qkelq7qYaolq4igi'to
2

= cgigloocgiigiladgig,"blq4iq"to
- 4. igilaocgiglaolg.iq

" too 4,7g
"to

=

go.gilacgigilofg.iq?algiigil=JirC-qjy4aol-g3y'' to 4,45g,
" too

=
= J

, ,
L

J 44



Proof of Kaplansky's Theorem
Proof of three field identity

Notation

( xiao -- Cx ;g) a. = II.
o

Cl-qix)

jcziql-n-I.ae-iz" q
I

= Czjqlaolqlzjqloo (q igloo
Jamie jcqaiqml
Fam : -- j C - qaiqml
Jm i -- Tm .sn = II

,

Cl- gim )
•

c-ya gottamix
, 471 ftp.n? -

I- q XZ



Proof I Kaplansky 's Theorem
Proof ol threeheld identity
Procol ol second equality (sketch)

T.czFun -- tipsily" ,- of
"

,
-

q
" )

f. in him .gl - jhb-qlmtgxhp.gs , Ylx)

ejcxig.lu/-q4/x3g&iXly/-qxyJuxTooi6jCg3xy;q&)jCqMx2y7q'a )
-

H -g3x2ig9jtq3y5y0 )
Lisa 4,34 -g

"'
,
-

g,
"4= - - .

= - - -
= Ji

,25,4



Proof of Kaplansky 'sTheorem
The first equality JimJe,u=JyzTT4
gives Kaplansky's Thur

The first equality gives a relationship
between solutions to

8 Kek xZy2
and solutions to

8kt I = 44272



Prod of Kaplansky's Theorem

JimTau -- T.czFun-- IIccntq
First equality says

8y2 : Fx x> o
.
The coeff c Ck) b

the excess of the number of unequaleat
Solus with

KE II (8) ,YEO CE) ar KEI3181 y 4 ( El

are the number of urequivalent Solus with

>c⇒3C 8) YEO (8) or x III (8) y EY 18) .

814k¥22 Here x odd y even .
The coe CHI

is the number of inequivalent Solus with
YEO Cy)

over the number with

Y EZ C41



Prod of Kaplansky's Theorem

Thur ( Kaplansky)

A prime p , PII (mud 16) is representable
by both or none of the quadratic forms
set 3272 and It 6442
A prime p , p=9 (mod161 is representable
by exactly are ol the quadratic forms
a-

Proof follows fan previous relationship .

question : how?

bigger question :
In ameba XZ dy

2

,
how do we find

a , b , d ,
and how do we find the

weights ?



Proof of Kaplansky's Theorem

with a simple change of variables we
can rewrite the weights of solutions of

8ktI = achy
2

and 8k text 2y2
in terms of the weights of solutions of
8ktI = x'they

'

and 8Kel -XI 8yZ
We can rewrite the weighted Sdn sets

accordingly



Proof of Kaplansky 's Theorem
The excess of the number of urequvaleut
Solus of 8kt 1=541672 Cx20)

with
Sc III (8)

, y even ar XI
-13181 y odd

over

x EI>cool
,
y even or XIII ( 8) yodd

equals
the number of excess Solus of
8k-4=114872 Cx> o)

with

Y even
over

yodd .

JunJay-54544= calf
"



Proof of Kaplansky's Theorem

so if p = 8141 as prime
there are exactly two representations by
each ol these farms ( y →

-y )
if p=L (mod 8) is prime ,

the p 's

unique form x't 1642 Cx > o )

has XIII ( 81
y even

ar xEI3181 y odd

if p 's unique representation XI 872
Cx

, y
201 has y even

if f p has are presentation of the form

X't 3272



Drool of Kaplansky 's Theorem
II p prune pet (mod 161 is representable
by both ar none of the quadratic forms
>ok 3222 and set 6442
Proof

PEI (mod ke)

in the representation p = x416 y
'd

we must have XE II (mod 8) .

Thus p's representation in this form

has y even

p has a representation of the form

x.2+32-12
I) similar

.



Big Questions remaining
D if one knows the generating true .
JimJzay or TirFqy
how does one find a ibid m

an -eb= xZdy2
and the weight system?

2) if one just has a q-series how
does one find a,bed ? how does
one Laud the weight system? how
does one go

from the weight system to
the generating Fns?



Basic Questions

c) we have generating Tons .

How do we find a ibid in

ant b --x'- dye?
How do we find the weight system?
- o
-

For a Theta function fly) (and many Lrs)
there is an associated fractional exponent
d such that qt flag) is in someways
simpler than f Cgl . Modularity properties
are easier to state

.
The d far both

Je
,
m
-

- jcqeiqml and Fein =j Eyesight
is D= (m - 2e)Ygm "

=

"

a/b



Basic Questions

r) we can find a,b .

How do we

find d?

In Je
, ,M ,

• Jez
, Mz

( or with J 's .
)

D= - square
- free patrol M ,-Mz

Examples
Jail J2c4

D= C4-g2 e C 4--2*21! f-
"

-

"

I
D= - ( square - free 4.41 = - I

8 nel = XZTYZ
what about weights?



Basic Questions

c) Examples

J.czFive

D= ( 2-2.112+14 - 2. if
TE q

- of
"

as

D= - (square - free part 2-41=-2

One I =x42yZ
what about the weights?



Basic Questions
1) Examples
Python Code!
Should we assume a { b are in

lowest terms? No

Jz Js
,
iz
( actually I.6 Is ,R )

d-- C Te C 25=1+31
842 8.6 8112

= Iz t I = I,
D= - square- free part Getz

= -Z

24 hell = X't 272 has no solus

48Mt 22=44242 does have Solus



Basic Questions

c) We have the generatingTns
how do we find a ibid in an-eb=xEdyZ
how do we find weight system?

how do we show weight system

gives the generatingfurs?
2) same questions bet we only
start aeth a weight -one q

-series



Basic Questions
d n

e) Gwen generating function JyzF . ,y=ZcCulq
we suspect the Fourier Coefficient}
Ccu) are related to the solutions

of 8ntl= of +242 (D= -21

we suspect we are country are

weighted solutions .
How do we find the weights?
Find n such that

Shel =p aprime number

and Ccu) # O



Basic Questions
a

e) E ccnt-JTRJT.it
"o

- i-g.zg.iq?ezgIyEyE--
Find a

,
Enel=p prune , Catto

Note that these are primes p

where 1%1=1 , (F) =/
Examples (only lasting X> o )
n=2

,
ccz) = - 2 @net = (7

son's (3
,
-2) Getz) each - I

n=5 CC5)= 2 8h-4=41

sulu 's Gc-4) (3,41 each et

n-_ 9 ccak -2 8ntl= 73

solves Cl
,-6) ( 1,6) each - I

n- 11 car) = - 2 8nt 1=89

Solus 19
,
-2) ( 9,2) each - I



Basic Questions
a

e) E ccut-JTRTT.it
"o

-

- i-g.zy.iq?ezgIyEyE--
Find a

,
Enel=p prune , Catto

Note that these are primes p

where 1%1=1 , (F) =/
Examples (only lasting X> o )

Python code !
What happens when we don't

restrict ourselves to

cases ant b-- prime , canto
?



Basic Questions

c) ⇐occuiq! TRIM
= I-g

-2£ -eq3t2q5aqE - 2g! - -
building up weight system
go
from wajhlsytem to Theta fu ,

Look for a pattern
- end n

, 8ntl=p prime , Ccn
#0

make a list of the solution,

These are p , C -Zip) =L
- Far p ,

C-Up) =-I

we look far n ,
8 ntkpccnl#O

n=3 c (3) = I 8h-11=25

Sulu> (Tco) wt I

n
--6 CCEI =L Ent k 49

Solus tho) wt I



Basic Questions
&

n

r) I clung,
= Terje

,4
neo

Building up weight system
Gayfrom weight system to theta fees .

- u -

n=2 cC2I= -2 Ent 1=17

sums ( 3
,
Iz) each wt - I

n= 5 CCT) 22 8h-11=41

Solus ( 3
,
IU) each at +1

how does above relate to Solus to

n= 87 c (871=-4 Sent#7.41=697

( 7 , -118 ) , 17 , -181

( 2514161 ,
as

,
ye,
} each weight - I

Solus { weights multiply .



Basic Questions

i) .p=x2t2y2 q=u42v
'

D-= 4k

p= (X - Fzy) Cx-cF2y) 25-3
, y=2

q
-

- (u - Fzv) (ut Fzzr) u=3
,
-0=4

note we actually have IX , IT ,
IU

, IV.-
consider permutation> far pay

pq-ef.ca-Ey) (u -Fzv ))
•((xefzy) ( ut Foo))

=fxu- 2yv - Fzlxvtyu) )
( Xu -Zyvefzlxvtyu )]

= 19-2.8 - Fz ( iz -ice) f. a - -
- ( - Z -FI - 18 ) - o -



Basic Questions

c) Back to last ol n
, where

shek p a prime ,
C (n) # U

n
-
-Z c (2) = -2 p= 17

Salus (3
, -12) each weight - I

n-_ 5 CC51=2 p= 41

Solus (3,141 each weight + I
n=9 ccel = -2 p

-
-73

Solus Cl
,
I 61 each weight - I

@

•

•

Pattern ? Here 8 ntl - X't 242
-c 's odd

, y
even .

The coeff cent
is the excess of the number of eueqciuakut
Solus ol 8h -4- X't42 with
y EO mod4 ever those with

722 Module



aneb = X't 272
Basic Questions

n
-

- Cx442 -bl Iq
a) How dowe go from our guess
at the weight system to our

generating function

⇐od Cnlq! JinFi ,y
CCM as number ol urequw solus

ol

Quel = XI42 with qzo (mod4)
over those with y

⇐ 2 (mud 4)

IIe Gig! I ⇐ glare-144414718

§q
(aren't 2144212111g

) exponent is n .



Basic Questions

i

IIe any:{ ⇐ g.
("""44444718

- I ¥, q[
Kraft 444214118

= I up glare"42 Gst- e) 18

= I {says qr
-

k tr 12+5

= izz g.

""

organs
.

Gigi
's '

s
2 ( E)

= E ? c-ur c-gig" ' Es tu
'

g g

= I Fon Jn ,2 = Fi ,yJ , ,z
✓



Summary
Two problems
- Kaplansky5 Theorem § Simultaneous
representations of primes by binary
quadratic forms

- A
q
- series from R LN &
two conjectures of Andrews

Underlying themes and questions
- Three field identities

- Relating Fourier coefficients al

q
-series to binary quadratic forms

- Two types ol Hecke - type
double -sums

Proof of Kaplansky 's Theorem



Next time lecture 5

- A
q
-series from the Lost Notebook

ocql
Andrews

,Dyson ,
Hackerson

Cohen

- intro to quantum modular forms
Hagler , Folsom )

- underlying themes { questions
- three field identities

- relating Fourier coefficients da q
-series

to the solutions of a quadratic form
- Hecke - type double - sums
and their buildingblocks



Andrews
,
Dyson ,

Hickerson

Partitions and indefinite quadratic farmsInu
. Math 1988

C. F Gauss

Theorie der biquadraticchar Rest e ,I
Cohen

q- identities and Maas>Wave farms
luv Math 1988

Kaplansky
The forms x c-3272 and xx 64yd
Proc AMS 2003

Mortenson

threefield identities and simultaneous
representations of primes by quadratic forms
J Nonuser Theory 2013

Serve

Modular forms of weight one and
Galois representations 1977



Andrews

Partitions with distinct wars 2009

Corson
,
Favero

, Leisinger ,
Zubacry

characters and q
-series in QCEl

J
,
Number Theory 2004


