On the distribution of Campana points on toric varieties (joint work with Marta Pieropan)

Damaris Schindler
Georg-August-Universität Göttingen

Saint Petersburg State University and Euler International Mathematical Institute

5th October 2020

Introduction

Motivation

Interpolate between integral and rational points on varieties over number fields.

Definition

Let $m \geq 1$. We call an integer $a \in \mathbb{Z} m$-full if

$$
p\left|a \Rightarrow p^{m}\right| a, \quad p \text { prime }
$$

Example

Let $\left[x_{0}: x_{1}\right]$ be homogeneous coordinates for $\mathbb{P}_{\mathbb{Z}}^{1}$ and $\mathcal{D}=\left\{x_{1}=0\right\}$.

- Integral points on $\mathbb{P}_{\mathbb{Z}}^{1} \backslash \mathcal{D}$ correspond to $x_{0} \in \mathbb{Z}$ and $x_{1} \in\{ \pm 1\}$
- Campana points $\left(\mathbb{P}_{\mathbb{Z}}^{1}, \mathcal{D}, m\right)$ correspond to $x_{0} \in \mathbb{Z}$ and $x_{1} \in \mathbb{Z}$ m-full, $\operatorname{gcd}\left(x_{0}, x_{1}\right)=1$.

Campana points

Definition

Let X be a smooth proper variety over a number field k and $D=\cup_{i=1}^{n} D_{i}$ a strict normal crossing divisor. Let $S \subset \Omega_{k}$ be a finite set of places of k such that there exists a smooth proper $\mathcal{O}_{k, S}$-model $(\mathcal{X}, \mathcal{D})$ of (X, D) and such that $\mathcal{D}=\cup_{i=1}^{n} \mathcal{D}_{i}$ is a strict normal crossing divisor modulo primes p not contained in S. Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in\left(\mathbb{Z}_{\geq 1}\right)^{n}$. Define
$(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, S}\right)=\left\{x \in \mathcal{X}\left(\mathcal{O}_{k, S}\right), x \notin D\right.$,

$$
\left.\forall_{p \notin S} \nu_{p}\left(x^{*} \mathcal{D}_{i}\right)>0 \Rightarrow \nu_{p}\left(x^{*} \mathcal{D}_{i}\right) \geq m_{i}, 1 \leq i \leq n\right\}
$$

Campana points

Definition

Let X be a smooth proper variety over a number field k and $D=\cup_{i=1}^{n} D_{i}$ a simple normal crossing divisor. Let $S \subset \Omega_{k}$ be a finite set of places of k such that there exists a smooth proper $\mathcal{O}_{k, S}$-model $(\mathcal{X}, \mathcal{D})$ of (X, D) and such that $\mathcal{D}=\cup_{i=1}^{n} \mathcal{D}_{i}$ is a simple normal crossing divisor modulo primes p not contained in S. Let $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in(\mathbb{Z} / N \mathbb{Z})^{n}$. Define
$(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, s}\right)=\left\{x \in \mathcal{X}\left(\mathcal{O}_{k, S}\right), x \notin D\right.$,

$$
\left.\forall_{p \notin S} \nu_{p}\left(x^{*} \mathcal{D}_{i}\right)>0 \Rightarrow \nu_{p}\left(x^{*} \mathcal{D}_{i}\right) \geq m_{i}, 1 \leq i \leq n\right\} .
$$

Remark

If f_{i} is a local equation of \mathcal{D}_{i} around x then

$$
\nu_{p}\left(x^{*} \mathcal{D}_{i}\right)=\nu_{p}\left(f_{i}(x)\right)
$$

Campana points, an example

Example

Let $m \geq 1$. Let $\left[x_{0}: x_{1}\right]$ be homogeneous coordinates for $\mathbb{P}_{\mathbb{Z}}^{1}$ and $\mathcal{D}=\left\{x_{1}=0\right\}$. Then
$\left(\mathbb{P}_{\mathbb{Z}}^{1},\left\{x_{1}=0\right\}, m\right)(\mathbb{Z})=\left\{\left(x_{0}: x_{1}\right), x_{0}, x_{1} \in \mathbb{Z}\right.$ coprime,x_{1} is m-full $\}$.
One has the inclusions

$$
\left(\mathbb{P}_{\mathbb{Z}}^{1} \backslash \mathcal{D}\right)(\mathbb{Z}) \subset\left(\mathbb{P}_{\mathbb{Z}}^{1}, \mathcal{D}, m\right)(\mathbb{Z}) \subset\left(\mathbb{P}_{\mathbb{Q}}^{1} \backslash D\right)(\mathbb{Q})
$$

Counting Campana points?

Question

Assume that $(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, S}\right)$ is Zariski-dense in X (and not thin). What can we say about the distribution of the points $(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, S}\right)$ in X ? Assume we are given a suitable height function, what should one expect for the number of Campana points up to a certain height?

Counting Campana points

Theorem (Van Valckenborgh 2012)

Take $k=\mathbb{Q}, X=\mathbb{P}^{n-1}$ and $\Delta=H_{0} \cup \ldots \cup H_{n}$, with

$$
H_{i}=\left\{x_{i}=0\right\}, \quad 0 \leq i \leq n-1
$$

and

$$
H_{n}=\left\{x_{0}+\ldots+x_{n-1}=0\right\}
$$

Set $m_{0}=\ldots=m_{n}=2$. Then points in $(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathbb{Z})$ correspond to tuples

$$
\left(x_{0}, \ldots, x_{n-1}\right) \in \mathbb{Z}^{n}, \quad \operatorname{gcd}\left(x_{0}, \ldots, x_{n-1}\right)=1
$$

such that x_{i} is square-full for $0 \leq i \leq n-1$ and

$$
x_{0}+\ldots+x_{n-1} \text { is squarefull. }
$$

Counting Campana points

Theorem (Van Valckenborgh 2012)

Define the height function

$$
H\left(x_{0}: \ldots: x_{n-1}\right):=\max \left\{\left|x_{0}\right|, \ldots,\left|x_{n-1}\right|,\left|\sum_{i=0}^{n-1} x_{i}\right|\right\}
$$

on coprime tuples $\left(x_{0}, \ldots x_{n-1}\right) \in \mathbb{Z}^{n}$. Then for $n \geq 4$ one has

$$
\sharp\{x \in(\mathcal{X}, \Delta, \mathbf{m})(\mathbb{Z}): H(x) \leq B\}=C B^{\frac{n-1}{2}}+O\left(B^{\frac{n-1}{2}-\delta}\right) .
$$

Basically, one needs to count square-full solutions to

$$
x_{0}+\ldots+x_{n-1}=x_{n}
$$

m-full numbers

Theorem (Erdos-Szekeres 1935)

Let $m \geq 1$. Then

$$
\sharp\{1 \leq y \leq B: y \text { is } m-\text { full }\} \sim c_{m} B^{\frac{1}{m}}
$$

Idea: parametrize m-full numbers by products $\prod_{r=0}^{m-1} y_{r}^{m+r}$ with y_{1}, \ldots, y_{m-1} square-free and pairwise coprime.

Lemma (Pieropan-S 2020)

Let $d>0$ be square-free, $m \geq 2$. Then

$$
\begin{aligned}
& \sharp\{1 \leq y \leq B: y \text { is } m-\text { full, } d \mid y\} \\
& \sim c_{m} B^{\frac{1}{m}} \prod_{p \mid d}\left(1+p-p^{\frac{m-1}{m}}\right)^{-1}
\end{aligned}
$$

Counting Campana points

Let $X=\mathbb{P}^{n-1}, \Delta=\cup_{i=0}^{n} D_{i}$ with $D_{i}=\left\{x_{i}=0\right\}, 0 \leq i \leq n-1$, and $D_{n}=\left\{c_{0} x_{0}+\ldots+c_{n-1} x_{n-1}=0\right\}$, for $c_{0}, \ldots, c_{n-1} \in \mathbb{Z} \backslash\{0\}$.

Theorem (Browning-Yamagishi 2019)

Assume that $m_{0}, \ldots, m_{n} \geq 2$ such that there exists $j \in\{0, \ldots, n\}$ with

$$
\sum_{\substack{0 \leq i \leq n \\ i \neq j}} \frac{1}{m_{i}\left(m_{i}+1\right)} \geq 1
$$

Then

$$
\sharp\left\{x \in(\mathcal{X}, \Delta, \mathbf{m})(\mathbb{Z}): H_{\text {naiv }}(x) \leq B\right\} \sim c B^{\sum_{i=0}^{n} \frac{1}{m_{i}}-1} .
$$

Note

$$
K_{\mathbb{P}^{n-1}}+\sum_{i=0}^{n}\left(1-\frac{1}{m_{i}}\right) D_{i} \sim\left(1-\sum_{i=0}^{n} \frac{1}{m_{i}}\right) H
$$

Counting Campana points

Question

Conjectures for the growth of the number of Campana points of bounded height?

Conjecture (Manin-Peyre)

Let V be a smooth projective Fano variety over a number field k such that $V(k)$ is dense in V. Then there exists a thin subset Z such that

$$
\sharp\left\{x \in V(k) \backslash Z: H_{\omega_{x}^{-1}}(x) \leq B\right\} \sim c B(\log B)^{\operatorname{rk}(\operatorname{Pic}(X))-1} .
$$

Manin-type conjecture for Campana points

Assume that $(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, S}\right)$ is Zariski-dense in X (and not thin), and let L be an ample line bundle on X.

Conjecture (Pieropan-Smeets-Tanimoto-Varilly-Alvarado 2019)

There exists a thin set Z such that

$$
\sharp\left\{x \in(\mathcal{X}, \mathcal{D}, \mathbf{m})\left(\mathcal{O}_{k, s}\right) \backslash Z: H_{L}(x) \leq B\right\} \sim c B^{a}(\log B)^{b-1}
$$

where c is a product of local densities,

$$
a=\inf \left\{t \in \mathbb{R}: t L+K_{X}+\sum_{i=1}^{n}\left(1-\frac{1}{m_{i}}\right) D_{i} \text { is effective }\right\}
$$

and b is the codimension of the minimal face of the effective cone that contains $a L+K_{X}+\sum_{i=1}^{n}\left(1-\frac{1}{m_{i}}\right) D_{i}$.

Campana points on toric varieties

Theorem (Pieropan-S. 2020)

Let X be a split smooth proper toric variety over \mathbb{Q} with boundary divisor $D=\cup_{i=1}^{s} D_{i}$. Let $m_{i} \geq 2$ for $1 \leq i \leq s$ and assume that $L=-\left(K_{X}+\sum_{i=1}^{s}\left(1-\frac{1}{m_{i}}\right) D_{i}\right)$ is ample + a technical condition on L. Let $r=\operatorname{rank} \operatorname{Pic}(X)$. Then

$$
\sharp\left\{x \in(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathbb{Z}): H_{L}(x) \leq B\right\} \sim c B(\log B)^{r-1} .
$$

where c is compatible with the conjectured constant.

Remark

The technical condition holds for e.g. projective space, products of projective spaces, blow-up of \mathbb{P}^{2} in one point, and all smooth projective toric varieties with $\operatorname{rank} \operatorname{Pic}(X) \geq \operatorname{dim} X+2$.

Campana points on toric varieties

Proof strategy:

- Use Cox rings/universal torsor method
- Generalized version of the Blomer-Brüdern hyperbola method

Future goals: allow for the removal of more general divisors, consider hypersurfaces within toric varieties

Let $Y \rightarrow X$ be the universal torsor of X. Then
$Y \subset \mathbb{A}_{\mathbb{Q}}^{s}=\operatorname{Spec}\left(\mathbb{Q}\left[y_{\rho_{1}}, \ldots, y_{\rho_{s}}\right]\right)$ is the open subvariety given by the complement of

$$
\left\langle\prod_{\rho \notin \sigma} y_{\rho}=0, \sigma \in \Sigma_{\max }\right\rangle .
$$

Campana points on toric varieties

Let $\pi: \mathcal{Y} \rightarrow \mathcal{X}$ be an integral model of $Y \rightarrow X$. By Salberger's work

$$
\pi^{-1}((\mathcal{X}, \mathcal{D}, \mathbf{m}))(\mathbb{Z})=\left\{\mathbf{y} \in \mathcal{Y}(\mathbb{Z}): y_{i} \neq 0, y_{i} \text { if } m_{i}-\text { full, } 1 \leq i \leq s\right\}
$$

Remark

Finding $\mathbf{y} \in \mathcal{Y}(\mathbb{Z})$ translates into finding tuples $\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{Z}^{s}$ with

$$
\operatorname{gcd}\left(\prod_{\rho \notin \sigma} y_{\rho}, \sigma \in \Sigma_{\max }\right)=1
$$

The height function

Let $L=-\left(K_{X}+\sum_{i=1}^{s}\left(1-\frac{1}{m_{i}}\right) D_{i}\right)$, and assume that L is (very) ample.
For $\sigma \in \Sigma_{\max }$ find a divisor $L(\sigma) \sim L$ with

$$
L(\sigma)=\sum_{\rho_{i} \notin \sigma} \alpha_{\sigma, i} D_{i}
$$

Proposition

Let $\mathbf{y} \in Y(K)$. Then

$$
H_{L}(\pi(\mathbf{y}))=\prod_{\nu \in \Omega_{k}} \sup _{\sigma \in \Sigma_{\max }} \prod_{i=1}^{s}\left|y_{i}^{\alpha_{\sigma, i}}\right|_{\nu}
$$

The counting function

Goal

Asymptotically evaluate the counting function

$$
\begin{gathered}
N(B)=\frac{1}{2^{r}} \sharp\left\{\mathbf{y} \in \mathcal{Y}(\mathbb{Z}): y_{i} \neq 0, y_{i} \text { is } m_{i}-\text { full, } 1 \leq i \leq s,\right. \\
\left.\max _{\sigma \in \Sigma_{\max }} \prod_{i=1}^{s}\left|y_{i}\right|^{\alpha_{\sigma, i}} \leq B\right\} .
\end{gathered}
$$

An example

Let $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$.
The universal torsor $Y \subset \mathbb{A}^{4}=\operatorname{Spec}\left(\mathbb{Q}\left[x_{0}, y_{0}, x_{1}, y_{1}\right]\right)$ is given by the complement of the subvariety given by $\left\langle x_{0} y_{0}, y_{0} x_{1}, x_{1} y_{1}, y_{1} x_{0}\right\rangle$, i.e.

$$
Y=\mathbb{A}^{4} \backslash\left(\left\{x_{0}=x_{1}=0\right\} \cup\left\{y_{0}=y_{1}=0\right\}\right)
$$

Take $m_{1}=\ldots=m_{4}=2$ and $K_{x}=-\sum_{i=1}^{4} D_{i}$, i.e.
$L=\frac{1}{2} \sum_{i=1}^{4} D_{i}$. Then the height function for integral points $\left(x_{0}, y_{0}, x_{1}, y_{1}\right) \in \mathcal{Y}(\mathbb{Z})$ is given by

$$
\begin{aligned}
H_{L}\left(\pi\left(x_{0}, y_{0}, x_{1}, y_{1}\right)\right) & =\max \left(\left|y_{0} x_{0}\right|,\left|y_{0} x_{1}\right|,\left|y_{1} x_{0}\right|,\left|y_{1} x_{1}\right|\right) \\
& =\max \left(\left|x_{0}\right|,\left|x_{1}\right|\right) \max \left(\left|y_{0}\right|,\left|y_{1}\right|\right)
\end{aligned}
$$

Expectation for the growth of $N(B)$

$$
\begin{gathered}
N(B)=\frac{1}{2^{r}} \sharp\left\{\mathbf{y} \in \mathcal{Y}(\mathbb{Z}): y_{i} \neq 0, y_{i} \text { is } m_{i}-\text { full, } 1 \leq i \leq s,\right. \\
\left.\max _{\sigma \in \Sigma_{\max }} \prod_{i=1}^{s}\left|y_{i}\right|^{\alpha_{\sigma, i}} \leq B\right\} .
\end{gathered}
$$

Idea: consider the contribution of a dyadic box

$$
B_{i} \leq y_{i}<2 B_{i}, \quad 1 \leq i \leq s .
$$

Let $B_{i}=B^{t_{i}}$ for $t_{i} \geq 0$. Then

$$
\begin{aligned}
& \sharp\left\{\left(y_{1}, \ldots, y_{s}\right) \in \mathbb{Z}^{2}: y_{i} \sim B_{i}, m_{i}-\text { full, } 1 \leq i \leq s\right\} \\
& \quad \sim C \prod_{i=1}^{s} B_{i}^{\frac{1}{m_{i}}} \sim C B^{\sum_{i=1}^{s} \frac{1}{m_{i}} t_{i}} .
\end{aligned}
$$

Expectation for the growth of $N(B)$

Idea: consider the contribution of a dyadic box

$$
B_{i} \leq y_{i}<2 B_{i}, \quad 1 \leq i \leq s
$$

For the height condition to hold

$$
\max _{\sigma \in \Sigma_{\max }} \prod_{i=1}^{s}\left|y_{i}\right|^{\alpha_{\sigma, i}} \leq B
$$

we consider boxes for which

$$
\prod_{i=1}^{s} B_{i}^{\alpha_{\sigma, i}} \leq B, \quad \forall \sigma \in \Sigma_{\max }
$$

l.e. we consider $B_{i}=B^{t_{i}}$, with

$$
\begin{array}{r}
\sum_{i=1}^{s} \alpha_{\sigma, i} t_{i} \leq 1, \quad \sigma \in \Sigma_{\max } \\
t_{i} \geq 0, \quad 1 \leq i \leq s
\end{array}
$$

Maximizing a linear function on a polytope

Let $\mathcal{P} \subset \mathbb{R}^{s}$ be the polytope given by

$$
\begin{array}{r}
\sum_{i=1}^{s} \alpha_{\sigma, i} t_{i} \leq 1, \quad \sigma \in \Sigma_{\max } \\
t_{i} \geq 0, \quad 1 \leq i \leq s
\end{array}
$$

Goal

Maximize the function $\sum_{i=1}^{s} \frac{1}{m_{i}} t_{i}$ on the polytope \mathcal{P}.

- linear programming problem

Remark

Expected log exponent $=$ dimension of the face of the polytope \mathcal{P} where the max is attained.

The conjectured exponent

The conjectured exponent

$$
a=\inf \left\{t \in \mathbb{R}: t L+K_{X}+\sum_{i=1}^{s}\left(1-\frac{1}{m_{i}}\right) \text { is effective }\right\}
$$

leads to the following linear programming problem.
Minimize the linear function $\sum_{\sigma \in \Sigma_{\max }} \lambda_{\sigma}$ subject to the conditions

$$
\begin{aligned}
\lambda_{\sigma} & \geq 0, \quad \sigma \in \Sigma_{\max } \\
\sum_{\sigma \in \Sigma_{\max }} \lambda_{\sigma} \alpha_{i, \sigma} & \geq \frac{1}{m_{i}}, \quad 1 \leq i \leq s .
\end{aligned}
$$

Duality in linear programming

Theorem (Strong duality in linear programming)

Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{R}), \mathbf{b} \in \mathbb{R}^{m}$ and $\mathbf{c} \in \mathbb{R}^{n}$.
\mathcal{P} : Maximize $\mathbf{c}^{t} \mathbf{x}$ subject to

$$
A \mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq 0
$$

\mathcal{D} : Minimize $\mathbf{b}^{t} \mathbf{y}$ subject to

$$
A^{t} \mathbf{y} \geq \mathbf{c}, \quad \mathbf{y} \geq 0
$$

If \mathcal{P} has a finite optimal solution then so does \mathcal{D} and these two are equal.

A pair of dual linear programming problems

The exponent that we compute

Maximize the function $\sum_{i=1}^{s} \frac{1}{m_{i}} t_{i}$ subject to

$$
\begin{array}{r}
\sum_{i=1}^{s} \alpha_{\sigma, i} t_{i} \leq 1, \quad \sigma \in \Sigma_{\max } \\
t_{i} \geq 0, \quad 1 \leq i \leq s
\end{array}
$$

The conjectured exponent

Minimize the linear function $\sum_{\sigma \in \Sigma_{\max }} \lambda_{\sigma}$ subject to the conditions

$$
\begin{aligned}
\lambda_{\sigma} & \geq 0, \quad \sigma \in \Sigma_{\max } \\
\sum_{\sigma \in \Sigma_{\max }} \lambda_{\sigma} \alpha_{i, \sigma} & \geq \frac{1}{m_{i}}, \quad 1 \leq i \leq s
\end{aligned}
$$

From box counting to hyperbola shapes

Let $f: \mathbb{N}^{s} \rightarrow \mathbb{R}_{\geq 0}$ be an arithmetic function. Assume that we understand sums of f over boxes. Let B be a large real parameter, \mathcal{K} a finite index set and $\alpha_{i, k} \geq 0$ for $1 \leq i \leq s$ and $k \in \mathcal{K}$.

Goal

Find an asymptotic for

$$
S^{f}:=\sum_{\substack{\prod_{i=1}^{s} y_{i}, k \leq B, \forall k \in \mathcal{K} \\ y_{i} \in \mathbb{N}, 1 \leq i \leq s}} f(\mathbf{y}) .
$$

Remark

We don't assume any multiplicative structure for f.

From box counting to hyperbola shapes

Property I

Assume that there are non-negative real constants $C_{f, M} \leq C_{f, E}$ and $\delta>0$ and $\varpi_{i}>0,1 \leq i \leq s$ such that for all $B_{1}, \ldots, B_{s} \in \mathbb{R}_{\geq 1}$ we have

$$
\sum_{\substack{1 \leq y_{i} \leq B_{i} \\ 1 \leq i \leq s}} f(\mathbf{y})=C_{f, M} \prod_{i=1}^{s} B_{i}^{\varpi_{i}}+O\left(C_{f, E} \prod_{i=1}^{s} B_{i}^{\varpi_{i}}\left(\min _{1 \leq i \leq s} B_{i}\right)^{-\delta}\right)
$$

where the implied constant is independent of f.

From box counting to hyperbola shapes

Property II

Assume that there are positive real numbers D and ν such that the following holds. Let $\mathcal{I} \subsetneq\{1, \ldots, s\}$ be a non-empty subset of indices and fix some $\left(y_{i}\right)_{i \in \mathcal{I}} \in \mathbb{N}^{|\mathcal{I}|}$. Write $\mathbf{y}_{\mathcal{I}}$ for the vector $\left(y_{i}\right)_{i \in \mathcal{I}}$ and $\left|\mathbf{y}_{\mathcal{I}}\right|$ for its maximums norm. Then there is a non-negative constant $C_{f, M, \mathcal{I}}\left(\mathbf{y}_{\mathcal{I}}\right)$ such that for all $B_{i} \in \mathbb{R}_{\geq 1}$, $i \in\{1, \ldots, s\} \backslash \mathcal{I}$ one has

$$
\begin{aligned}
\sum_{1 \leq y_{i} \leq B_{i}, i \notin \mathcal{I}} f(\mathbf{y}) & =C_{f, M, \mathcal{I}}\left(\mathbf{y}_{\mathcal{I}}\right) \prod_{i \notin \mathcal{I}} B_{i}^{\varpi_{i}} \\
& +O\left(C_{f, E}\left|\mathbf{y}_{\mathcal{I}}\right|^{D} \prod_{i \notin \mathcal{I}} B_{i}^{\varpi_{i}}\left(\min _{i \notin \mathcal{I}} B_{i}\right)^{-\delta}\right)
\end{aligned}
$$

uniformly in $\left|\mathbf{y}_{\mathcal{I}}\right| \leq\left(\prod_{i \notin \mathcal{I}} B_{i}\right)^{\nu}$.

From box counting to hyperbola shapes

Recall

$$
S^{f}:=\sum_{\substack{\prod_{i=1}^{s} y_{i}, k \leq B, \forall k \in \mathcal{K} \\ y_{i} \in \mathbb{N}, 1 \leq i \leq s}} f(\mathbf{y}) .
$$

Define the polyhedron $\mathcal{P} \subset \mathbb{R}^{s}$ by

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i, k} \varpi_{i}^{-1} t_{i} \leq 1, \quad k \in \mathcal{K} \tag{0.1}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{i} \geq 0, \quad 1 \leq i \leq s \tag{0.2}
\end{equation*}
$$

The linear function $\sum_{i=1}^{s} t_{i}$ takes its maximal value on a face of \mathcal{P} which we call F. Write a for its maximal value.

From box counting to hyperbola shapes

Theorem (Pieropan-S. 2020)

Let $f: \mathbb{N}^{s} \rightarrow \mathbb{R}_{\geq 0}$ satisfy Property I and Property II*.
Assume that \mathcal{P} is bounded and non-degenerate, that F is not contained in a coordinate hyperplane of $\mathbb{R}^{s}+$ a technical condition on \mathcal{P}. Let $k=\operatorname{dim} F$. Then we have

$$
\begin{aligned}
S^{f} & =(s-1-k)!C_{f, M} C_{P}(\log B)^{k} B^{a} \\
& +O\left(C_{f, E}(\log \log B)^{s}(\log B)^{k-1} B^{a}\right) .
\end{aligned}
$$

Remark

The case $|\mathcal{K}|=1, \alpha_{i, k}=\alpha>0$ for all $1 \leq i \leq s$ and $k=s-1$ is contained in the original work of Blomer and Brüdern on the hyperbola method.

On the proof

In the hyperbola method, Blomer and Brüdern use the combinatorial identity

$$
(1-t)^{s} \sum_{\substack{j_{1}+\ldots+j_{s} \leq J \\ j_{i} \geq 0}} t^{j_{1}+\ldots+j_{s}}=1-t^{J+1} \sum_{l=0}^{s-1}\binom{J+I}{I}(1-t)^{\prime},
$$

for $t \in \mathbb{C}$ and $J \in \mathbb{N}$.

Problem

Replace the summation condition $j_{1}+\ldots+j_{s} \leq J$ by the intersection of a lattice with a polytope.

Idea

Use lattice point counting arguments instead.

Thanks

Thank you for listening!

