On the distribution of Campana points on toric varieties (joint work with Marta Pieropan)

Damaris Schindler

Georg-August-Universität Göttingen

Saint Petersburg State University and Euler International Mathematical Institute 5th October 2020

Motivation

Interpolate between integral and rational points on varieties over number fields.

Definition

Let $m \geq 1$. We call an integer $a \in \mathbb{Z}$ *m*-full if

$$p \mid a \Rightarrow p^m \mid a, p \text{ prime}$$

Example

Let $[x_0 : x_1]$ be homogeneous coordinates for $\mathbb{P}^1_{\mathbb{Z}}$ and $\mathcal{D} = \{x_1 = 0\}.$

- Integral points on $\mathbb{P}^1_{\mathbb{Z}} \setminus \mathcal{D}$ correspond to $x_0 \in \mathbb{Z}$ and $x_1 \in \{\pm 1\}$
- Campana points $(\mathbb{P}^1_{\mathbb{Z}}, \mathcal{D}, m)$ correspond to $x_0 \in \mathbb{Z}$ and $x_1 \in \mathbb{Z}$ *m*-full, $gcd(x_0, x_1) = 1$.

Definition

Let X be a smooth proper variety over a number field k and $D = \bigcup_{i=1}^{n} D_i$ a strict normal crossing divisor. Let $S \subset \Omega_k$ be a finite set of places of k such that there exists a smooth proper $\mathcal{O}_{k,S}$ -model $(\mathcal{X}, \mathcal{D})$ of (X, D) and such that $\mathcal{D} = \bigcup_{i=1}^{n} \mathcal{D}_i$ is a strict normal crossing divisor modulo primes p not contained in S. Let $\mathbf{m} = (m_1, \dots, m_n) \in (\mathbb{Z}_{\geq 1})^n$. Define

$$(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathcal{O}_{k,S}) = \{ x \in \mathcal{X}(\mathcal{O}_{k,S}), x \notin D, \\ \forall_{p \notin S} \nu_p(x^* \mathcal{D}_i) > 0 \Rightarrow \nu_p(x^* \mathcal{D}_i) \ge m_i, \ 1 \le i \le n \}.$$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Campana points

Definition

Let X be a smooth proper variety over a number field k and $D = \bigcup_{i=1}^{n} D_i$ a simple normal crossing divisor. Let $S \subset \Omega_k$ be a finite set of places of k such that there exists a smooth proper $\mathcal{O}_{k,S}$ -model $(\mathcal{X}, \mathcal{D})$ of (X, D) and such that $\mathcal{D} = \bigcup_{i=1}^{n} \mathcal{D}_i$ is a simple normal crossing divisor modulo primes p not contained in S. Let $\mathbf{m} = (m_1, \ldots, m_n) \in (\mathbb{Z}/N\mathbb{Z})^n$. Define

$$\begin{aligned} (\mathcal{X},\mathcal{D},\mathbf{m})(\mathcal{O}_{k,S}) &= \{ x \in \mathcal{X}(\mathcal{O}_{k,S}), x \notin D, \\ \forall_{p \notin S} \nu_p(x^*\mathcal{D}_i) > 0 \Rightarrow \nu_p(x^*\mathcal{D}_i) \geq m_i, \ 1 \leq i \leq n \}. \end{aligned}$$

Remark

If f_i is a local equation of \mathcal{D}_i around x then

$$\nu_p(x^*\mathcal{D}_i)=\nu_p(f_i(x)).$$

イロト イヨト イヨト イヨト

臣

Example

Let $m \ge 1$. Let $[x_0 : x_1]$ be homogeneous coordinates for $\mathbb{P}^1_{\mathbb{Z}}$ and $\mathcal{D} = \{x_1 = 0\}$. Then

$$(\mathbb{P}^{1}_{\mathbb{Z}}, \{x_{1} = 0\}, m)(\mathbb{Z}) = \{(x_{0} : x_{1}), x_{0}, x_{1} \in \mathbb{Z} \text{ coprime }, x_{1} \text{ is } m-\text{full}\}.$$

One has the inclusions

 $(\mathbb{P}^1_{\mathbb{Z}}\setminus\mathcal{D})(\mathbb{Z})\subset (\mathbb{P}^1_{\mathbb{Z}},\mathcal{D},m)(\mathbb{Z})\subset (\mathbb{P}^1_{\mathbb{Q}}\setminus D)(\mathbb{Q}).$

Question

Assume that $(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathcal{O}_{k,S})$ is Zariski-dense in X (and not thin). What can we say about the distribution of the points $(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathcal{O}_{k,S})$ in X? Assume we are given a suitable height function, what should one expect for the number of Campana points up to a certain height?

Counting Campana points

Theorem (Van Valckenborgh 2012)

Take $k = \mathbb{Q}$, $X = \mathbb{P}^{n-1}$ and $\Delta = H_0 \cup \ldots \cup H_n$, with

$$H_i = \{x_i = 0\}, \quad 0 \le i \le n - 1,$$

and

$$H_n = \{x_0 + \ldots + x_{n-1} = 0\}.$$

Set $m_0 = \ldots = m_n = 2$. Then points in $(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathbb{Z})$ correspond to tuples

$$(x_0,\ldots,x_{n-1})\in\mathbb{Z}^n, \quad \gcd(x_0,\ldots,x_{n-1})=1$$

such that x_i is square-full for $0 \le i \le n-1$ and

$$x_0 + \ldots + x_{n-1}$$
 is squarefull.

(日) (四) (三) (三) (三)

Theorem (Van Valckenborgh 2012)

Define the height function

$$H(x_0:\ldots:x_{n-1}):=\max\{|x_0|,\ldots,|x_{n-1}|,|\sum_{i=0}^{n-1}x_i|\},\$$

on coprime tuples $(x_0, \ldots x_{n-1}) \in \mathbb{Z}^n$. Then for $n \ge 4$ one has $\sharp \{x \in (\mathcal{X}, \Delta, \mathbf{m})(\mathbb{Z}) : H(x) \le B\} = CB^{\frac{n-1}{2}} + O\left(B^{\frac{n-1}{2}-\delta}\right).$

Basically, one needs to count square-full solutions to

$$x_0+\ldots+x_{n-1}=x_n.$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Erdos-Szekeres 1935)

Let $m \ge 1$. Then

$$\sharp\{1 \le y \le B : y \text{ is } m - full\} \sim c_m B^{\frac{1}{m}}$$

Idea: parametrize *m*-full numbers by products $\prod_{r=0}^{m-1} y_r^{m+r}$ with y_1, \ldots, y_{m-1} square-free and pairwise coprime.

Lemma (Pieropan-S 2020)

Let d > 0 be square-free, $m \ge 2$. Then

$$\sharp \{1 \le y \le B : y \text{ is } m - full, \ d \mid y \}$$
$$\sim c_m B^{\frac{1}{m}} \prod_{p \mid d} \left(1 + p - p^{\frac{m-1}{m}}\right)^{-1}.$$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Counting Campana points

Let
$$X = \mathbb{P}^{n-1}$$
, $\Delta = \bigcup_{i=0}^{n} D_i$ with $D_i = \{x_i = 0\}$, $0 \le i \le n-1$,
and $D_n = \{c_0 x_0 + \ldots + c_{n-1} x_{n-1} = 0\}$, for $c_0, \ldots, c_{n-1} \in \mathbb{Z} \setminus \{0\}$.

Theorem (Browning-Yamagishi 2019)

Assume that $m_0, \ldots, m_n \ge 2$ such that there exists $j \in \{0, \ldots, n\}$ with

$$\sum_{\substack{0 \leq i \leq n \ i \neq j}} rac{1}{m_i(m_i+1)} \geq 1.$$

Then

$$\sharp\{x\in (\mathcal{X},\Delta,\mathbf{m})(\mathbb{Z}): H_{\textit{naiv}}(x)\leq B\}\sim cB^{\sum_{i=0}^n\frac{1}{m_i}-1}$$

Note

$$\mathcal{K}_{\mathbb{P}^{n-1}} + \sum_{i=0}^n \left(1 - \frac{1}{m_i}\right) D_i \sim \left(1 - \sum_{i=0}^n \frac{1}{m_i}\right) H.$$

イロト イヨト イヨト イヨト 三日

Question

Conjectures for the growth of the number of Campana points of bounded height?

Conjecture (Manin-Peyre)

Let V be a smooth projective Fano variety over a number field k such that V(k) is dense in V. Then there exists a thin subset Z such that

$$\sharp\{x \in V(k) \setminus Z : H_{\omega_x^{-1}}(x) \leq B\} \sim cB(\log B)^{\mathsf{rk}(\mathsf{Pic}(X))-1}.$$

Manin-type conjecture for Campana points

Assume that $(\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathcal{O}_{k,S})$ is Zariski-dense in X (and not thin), and let L be an ample line bundle on X.

Conjecture (Pieropan-Smeets-Tanimoto-Varilly-Alvarado 2019)

There exists a thin set Z such that

$$\sharp \{x \in (\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathcal{O}_{k, \mathcal{S}}) \setminus Z : H_L(x) \leq B\} \sim cB^{\mathfrak{a}}(\log B)^{b-1},$$

where c is a product of local densities,

$$a = \inf\{t \in \mathbb{R} : tL + K_X + \sum_{i=1}^n \left(1 - \frac{1}{m_i}\right) D_i \text{ is effective }\},$$

and b is the codimension of the minimal face of the effective cone that contains $aL + K_X + \sum_{i=1}^n \left(1 - \frac{1}{m_i}\right) D_i$.

イロト イヨト イヨト イヨト

Theorem (Pieropan-S. 2020)

Let X be a split smooth proper toric variety over \mathbb{Q} with boundary divisor $D = \bigcup_{i=1}^{s} D_i$. Let $m_i \ge 2$ for $1 \le i \le s$ and assume that $L = -\left(K_X + \sum_{i=1}^{s} \left(1 - \frac{1}{m_i}\right) D_i\right)$ is ample + a technical condition on L. Let $r = \operatorname{rank} \operatorname{Pic}(X)$. Then

$$\sharp\{x \in (\mathcal{X}, \mathcal{D}, \mathbf{m})(\mathbb{Z}) : H_L(x) \le B\} \sim cB(\log B)^{r-1}$$

where c is compatible with the conjectured constant.

Remark

The technical condition holds for e.g. projective space, products of projective spaces, blow-up of \mathbb{P}^2 in one point, and all smooth projective toric varieties with rank $\operatorname{Pic}(X) \ge \dim X + 2$.

Proof strategy:

• Use Cox rings/universal torsor method

• Generalized version of the Blomer-Brüdern hyperbola method Future goals: allow for the removal of more general divisors, consider hypersurfaces within toric varieties

Let $Y \to X$ be the universal torsor of X. Then $Y \subset \mathbb{A}^s_{\mathbb{Q}} = \operatorname{Spec}(\mathbb{Q}[y_{\rho_1}, \dots, y_{\rho_s}])$ is the open subvariety given by the complement of

$$\langle \prod_{
ho \notin \sigma} y_
ho = 0, \,\, \sigma \in \Sigma_{\mathsf{max}}
angle.$$

伺下 イヨト イヨト

Let $\pi:\mathcal{Y}\to\mathcal{X}$ be an integral model of $Y\to X$. By Salberger's work

$$\pi^{-1}((\mathcal{X},\mathcal{D},\mathbf{m}))(\mathbb{Z})=\{\mathbf{y}\in\mathcal{Y}(\mathbb{Z}):y_i
eq0,\ y_i ext{ if } m_i ext{-full},\ 1\leq i\leq s\}.$$

Remark

Finding $\mathbf{y} \in \mathcal{Y}(\mathbb{Z})$ translates into finding tuples $(y_1, \ldots, y_s) \in \mathbb{Z}^s$ with

$$\gcd\left(\prod_{
ho \notin \sigma} y_{
ho}, \sigma \in \Sigma_{\mathsf{max}}
ight) = 1.$$

(本間) (本語) (本語) (二語

Let
$$L = -\left(K_X + \sum_{i=1}^{s} \left(1 - \frac{1}{m_i}\right) D_i\right)$$
, and assume that L is (very) ample.
For $\sigma \in \Sigma_{\max}$ find a divisor $L(\sigma) \sim L$ with

$$L(\sigma) = \sum_{\rho_i \notin \sigma} \alpha_{\sigma,i} D_i.$$

Proposition

Let $\mathbf{y} \in Y(K)$. Then

$$\mathcal{H}_L(\pi(\mathbf{y})) = \prod_{
u \in \Omega_k} \sup_{\sigma \in \Sigma_{\max}} \prod_{i=1}^s |y_i^{lpha_{\sigma,i}}|_{
u}.$$

ヘロア 人間 アメヨア 人間 アー

æ

Goal

Asymptotically evaluate the counting function

$$N(B) = \frac{1}{2^r} \sharp \{ \mathbf{y} \in \mathcal{Y}(\mathbb{Z}) : y_i \neq 0, \ y_i \text{ is } m_i - full, 1 \le i \le s, \\ \max_{\sigma \in \Sigma_{\max}} \prod_{i=1}^s |y_i|^{\alpha_{\sigma,i}} \le B \}.$$

イロト イヨト イヨト イヨト

臣

Let $X = \mathbb{P}^1 \times \mathbb{P}^1$.

The universal torsor $Y \subset \mathbb{A}^4 = \operatorname{Spec}(\mathbb{Q}[x_0, y_0, x_1, y_1])$ is given by the complement of the subvariety given by $\langle x_0y_0, y_0x_1, x_1y_1, y_1x_0 \rangle$, i.e.

$$Y = \mathbb{A}^4 \setminus (\{x_0 = x_1 = 0\} \cup \{y_0 = y_1 = 0\}).$$

Take $m_1 = \ldots = m_4 = 2$ and $K_x = -\sum_{i=1}^4 D_i$, i.e. $L = \frac{1}{2} \sum_{i=1}^4 D_i$. Then the height function for integral points $(x_0, y_0, x_1, y_1) \in \mathcal{Y}(\mathbb{Z})$ is given by

> $H_L(\pi(x_0, y_0, x_1, y_1)) = \max(|y_0 x_0|, |y_0 x_1|, |y_1 x_0|, |y_1 x_1|)$ = max(|x_0|, |x_1|) max(|y_0|, |y_1|).

・ 同 ト ・ ヨ ト ・ ヨ ト

Expectation for the growth of N(B)

$$N(B) = \frac{1}{2^r} \sharp \{ \mathbf{y} \in \mathcal{Y}(\mathbb{Z}) : y_i \neq 0, \ y_i \text{ is } m_i - \text{full}, 1 \le i \le s, \\ \max_{\sigma \in \Sigma_{\max}} \prod_{i=1}^s |y_i|^{\alpha_{\sigma,i}} \le B \}.$$

Idea: consider the contribution of a dyadic box

$$B_i \leq y_i < 2B_i, \quad 1 \leq i \leq s.$$

Let $B_i = B^{t_i}$ for $t_i \ge 0$. Then

$$\sharp\{(y_1,\ldots,y_s)\in\mathbb{Z}^2: y_i\sim B_i, m_i-\text{full}, \ 1\leq i\leq s\}$$
$$\sim C\prod_{i=1}^s B_i^{\frac{1}{m_i}}\sim CB^{\sum_{i=1}^s\frac{1}{m_i}t_i}.$$

白 と く ヨ と く ヨ と …

Expectation for the growth of N(B)

Idea: consider the contribution of a dyadic box

$$B_i \leq y_i < 2B_i, \quad 1 \leq i \leq s.$$

For the height condition to hold

$$\max_{\sigma\in \boldsymbol{\Sigma}_{\max}}\prod_{i=1}^{s}|y_{i}|^{\alpha_{\sigma,i}}\leq B$$

we consider boxes for which

$$\prod_{i=1}^{s} B_{i}^{\alpha_{\sigma,i}} \leq B, \quad \forall \sigma \in \Sigma_{\max}.$$

I.e. we consider $B_i = B^{t_i}$, with

$$\sum_{i=1}^{s} lpha_{\sigma,i} t_i \leq 1, \quad \sigma \in \Sigma_{\max}, \ t_i \geq 0, \quad 1 \leq i \leq s.$$

Maximizing a linear function on a polytope

Let $\mathcal{P} \subset \mathbb{R}^s$ be the polytope given by

$$\sum_{i=1}^{s} lpha_{\sigma,i} t_i \leq 1, \quad \sigma \in \Sigma_{\max}, \ t_i \geq 0, \quad 1 \leq i \leq s.$$

Goal

Maximize the function $\sum_{i=1}^{s} \frac{1}{m_i} t_i$ on the polytope \mathcal{P} .

• linear programming problem

Remark

Expected log exponent = dimension of the face of the polytope ${\cal P}$ where the max is attained.

The conjectured exponent

$$a = \inf\{t \in \mathbb{R} : tL + K_X + \sum_{i=1}^{s} \left(1 - \frac{1}{m_i}\right) \text{ is effective}\},$$

leads to the following linear programming problem.

Minimize the linear function $\sum_{\sigma \in \Sigma_{\max}} \lambda_{\sigma}$ subject to the conditions

$$egin{aligned} &\lambda_{\sigma} \geq 0, \quad \sigma \in \Sigma_{\mathsf{max}} \ &\sum_{\sigma \in \Sigma_{\mathsf{max}}} \lambda_{\sigma} lpha_{i,\sigma} \geq rac{1}{m_i}, \quad 1 \leq i \leq s. \end{aligned}$$

Theorem (Strong duality in linear programming)

Let $A \in Mat_{m \times n}(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^m$ and $\mathbf{c} \in \mathbb{R}^n$. \mathcal{P} : Maximize $\mathbf{c}^t \mathbf{x}$ subject to

$$A\mathbf{x} \leq \mathbf{b}, \quad \mathbf{x} \geq 0.$$

 \mathcal{D} : Minimize $\mathbf{b}^t \mathbf{y}$ subject to

$$A^t \mathbf{y} \ge \mathbf{c}, \quad \mathbf{y} \ge \mathbf{0}.$$

If \mathcal{P} has a finite optimal solution then so does \mathcal{D} and these two are equal.

A pair of dual linear programming problems

The exponent that we compute

Maximize the function $\sum_{i=1}^{s} \frac{1}{m_i} t_i$ subject to

$$\sum_{i=1}^{s} \alpha_{\sigma,i} t_i \leq 1, \quad \sigma \in \Sigma_{\max},$$
$$t_i \geq 0, \quad 1 \leq i \leq s.$$

The conjectured exponent

Minimize the linear function $\sum_{\sigma\in\Sigma_{\max}}\lambda_{\sigma}$ subject to the conditions

$$egin{aligned} &\lambda_{\sigma} \geq 0, \quad \sigma \in \Sigma_{\max} \ &\sum_{\sigma \in \Sigma_{\max}} \lambda_{\sigma} lpha_{i,\sigma} \geq rac{1}{m_i}, \quad 1 \leq i \leq s. \end{aligned}$$

Let $f : \mathbb{N}^s \to \mathbb{R}_{\geq 0}$ be an arithmetic function. Assume that we understand sums of f over boxes. Let B be a large real parameter, \mathcal{K} a finite index set and $\alpha_{i,k} \geq 0$ for $1 \leq i \leq s$ and $k \in \mathcal{K}$.

Goal

Find an asymptotic for

$$S^{f} := \sum_{\substack{\prod_{i=1}^{s} y_{i}^{lpha_{i,k}} \leq B, \; orall k \in \mathcal{K} \ v_{i} \in \mathbb{N}, 1 \leq i \leq s}} f(\mathbf{y})$$

Remark

We don't assume any multiplicative structure for f.

Property I

Assume that there are non-negative real constants $C_{f,M} \leq C_{f,E}$ and $\delta > 0$ and $\varpi_i > 0$, $1 \leq i \leq s$ such that for all $B_1, \ldots, B_s \in \mathbb{R}_{\geq 1}$ we have

$$\sum_{\substack{1 \le y_i \le B_i \\ 1 \le i \le s}} f(\mathbf{y}) = C_{f,M} \prod_{i=1}^s B_i^{\varpi_i} + O\left(C_{f,E} \prod_{i=1}^s B_i^{\varpi_i} \left(\min_{1 \le i \le s} B_i\right)^{-\delta}\right)$$

where the implied constant is independent of f.

イロン 不同 とうほう 不同 とう

Property II

Assume that there are positive real numbers D and ν such that the following holds. Let $\mathcal{I} \subsetneq \{1, \ldots, s\}$ be a non-empty subset of indices and fix some $(y_i)_{i \in \mathcal{I}} \in \mathbb{N}^{|\mathcal{I}|}$. Write $\mathbf{y}_{\mathcal{I}}$ for the vector $(y_i)_{i \in \mathcal{I}}$ and $|\mathbf{y}_{\mathcal{I}}|$ for its maximums norm. Then there is a non-negative constant $C_{f,M,\mathcal{I}}(\mathbf{y}_{\mathcal{I}})$ such that for all $B_i \in \mathbb{R}_{\geq 1}$, $i \in \{1, \ldots, s\} \setminus \mathcal{I}$ one has

$$\sum_{1 \le y_i \le B_i, i \notin \mathcal{I}} f(\mathbf{y}) = C_{f,M,\mathcal{I}}(\mathbf{y}_{\mathcal{I}}) \prod_{i \notin \mathcal{I}} B_i^{\varpi_i} + O(C_{f,E} | \mathbf{y}_{\mathcal{I}} |^D \prod_{i \notin \mathcal{I}} B_i^{\varpi_i} (\min_{i \notin \mathcal{I}} B_i)^{-\delta})$$

uniformly in $|\mathbf{y}_{\mathcal{I}}| \leq (\prod_{i \notin \mathcal{I}} B_i)^{\nu}$.

From box counting to hyperbola shapes

Recall

$$S^f := \sum_{\substack{\prod_{i=1}^s y_i^{lpha_{i,k}} \leq \mathcal{B}, \ orall k \in \mathcal{K} \ y_i \in \mathbb{N}, 1 \leq i \leq s}} f(\mathbf{y}).$$

Define the polyhedron $\mathcal{P} \subset \mathbb{R}^s$ by

$$\sum_{i=1}^{s} \alpha_{i,k} \overline{\omega}_i^{-1} t_i \le 1, \quad k \in \mathcal{K}$$
(0.1)

and

$$t_i \geq 0, \quad 1 \leq i \leq s. \tag{0.2}$$

The linear function $\sum_{i=1}^{s} t_i$ takes its maximal value on a face of \mathcal{P} which we call F. Write a for its maximal value.

Theorem (Pieropan-S. 2020)

Let $f : \mathbb{N}^s \to \mathbb{R}_{\geq 0}$ satisfy Property I and Property II*. Assume that \mathcal{P} is bounded and non-degenerate, that F is not contained in a coordinate hyperplane of \mathbb{R}^s + a technical condition on \mathcal{P} . Let $k = \dim F$. Then we have

$$S^{f} = (s - 1 - k)! C_{f,M} c_{P} (\log B)^{k} B^{a}$$
$$+ O\left(C_{f,E} (\log \log B)^{s} (\log B)^{k-1} B^{a}\right).$$

Remark

The case $|\mathcal{K}| = 1$, $\alpha_{i,k} = \alpha > 0$ for all $1 \le i \le s$ and k = s - 1 is contained in the original work of Blomer and Brüdern on the hyperbola method.

In the hyperbola method, Blomer and Brüdern use the combinatorial identity

$$(1-t)^{s}\sum_{\substack{j_{1}+\ldots+j_{s}\leq J\\j_{i}\geq 0}}t^{j_{1}+\ldots+j_{s}}=1-t^{J+1}\sum_{l=0}^{s-1}\binom{J+l}{l}(1-t)^{l},$$

for $t \in \mathbb{C}$ and $J \in \mathbb{N}$.

Problem

Replace the summation condition $j_1 + \ldots + j_s \leq J$ by the intersection of a lattice with a polytope.

Idea

Use lattice point counting arguments instead.

ヘロト ヘヨト ヘヨト ヘヨト

Thank you for listening!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Ð,