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Introduction

Motivation

Interpolate between integral and rational points on varieties over
number fields.

Definition

Let m ≥ 1. We call an integer a ∈ Z m-full if

p | a⇒ pm | a, p prime

Example

Let [x0 : x1] be homogeneous coordinates for P1
Z and

D = {x1 = 0}.
Integral points on P1

Z \D correspond to x0 ∈ Z and x1 ∈ {±1}
Campana points (P1

Z,D,m) correspond to x0 ∈ Z and x1 ∈ Z
m-full, gcd(x0, x1) = 1.
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Campana points

Definition

Let X be a smooth proper variety over a number field k and
D = ∪ni=1Di a strict normal crossing divisor. Let S ⊂ Ωk be a
finite set of places of k such that there exists a smooth proper
Ok,S -model (X ,D) of (X ,D) and such that D = ∪ni=1Di is a strict
normal crossing divisor modulo primes p not contained in S . Let
m = (m1, . . . ,mn) ∈ (Z≥1)n. Define

(X ,D,m)(Ok,S) = {x ∈ X (Ok,S), x /∈ D,

∀p/∈Sνp(x∗Di ) > 0⇒ νp(x∗Di ) ≥ mi , 1 ≤ i ≤ n}.
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Campana points

Definition

Let X be a smooth proper variety over a number field k and
D = ∪ni=1Di a simple normal crossing divisor. Let S ⊂ Ωk be a
finite set of places of k such that there exists a smooth proper
Ok,S -model (X ,D) of (X ,D) and such that D = ∪ni=1Di is a
simple normal crossing divisor modulo primes p not contained in S .
Let m = (m1, . . . ,mn) ∈ (Z/NZ)n. Define

(X ,D,m)(Ok,S) = {x ∈ X (Ok,S), x /∈ D,

∀p/∈Sνp(x∗Di ) > 0⇒ νp(x∗Di ) ≥ mi , 1 ≤ i ≤ n}.

Remark

If fi is a local equation of Di around x then

νp(x∗Di ) = νp(fi (x)).
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Campana points, an example

Example

Let m ≥ 1. Let [x0 : x1] be homogeneous coordinates for P1
Z and

D = {x1 = 0}. Then

(P1
Z, {x1 = 0},m)(Z) = {(x0 : x1), x0, x1 ∈ Z coprime , x1 is m−full}.

One has the inclusions

(P1
Z \ D)(Z) ⊂ (P1

Z,D,m)(Z) ⊂ (P1
Q \ D)(Q).
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Counting Campana points?

Question

Assume that (X ,D,m)(Ok,S) is Zariski-dense in X (and not thin).
What can we say about the distribution of the points
(X ,D,m)(Ok,S) in X? Assume we are given a suitable height
function, what should one expect for the number of Campana
points up to a certain height?
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Counting Campana points

Theorem (Van Valckenborgh 2012)

Take k = Q, X = Pn−1 and ∆ = H0 ∪ . . . ∪ Hn, with

Hi = {xi = 0}, 0 ≤ i ≤ n − 1,

and
Hn = {x0 + . . .+ xn−1 = 0}.

Set m0 = . . . = mn = 2. Then points in (X ,D,m)(Z) correspond
to tuples

(x0, . . . , xn−1) ∈ Zn, gcd(x0, . . . , xn−1) = 1

such that xi is square-full for 0 ≤ i ≤ n − 1 and

x0 + . . .+ xn−1 is squarefull.
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Counting Campana points

Theorem (Van Valckenborgh 2012)

Define the height function

H(x0 : . . . : xn−1) := max{|x0|, . . . , |xn−1|, |
n−1∑
i=0

xi |},

on coprime tuples (x0, . . . xn−1) ∈ Zn. Then for n ≥ 4 one has

]{x ∈ (X ,∆,m)(Z) : H(x) ≤ B} = CB
n−1

2 + O
(
B

n−1
2
−δ
)
.

Basically, one needs to count square-full solutions to

x0 + . . .+ xn−1 = xn.
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m-full numbers

Theorem (Erdos-Szekeres 1935)

Let m ≥ 1. Then

]{1 ≤ y ≤ B : y is m − full} ∼ cmB
1
m

Idea: parametrize m-full numbers by products
∏m−1

r=0 ym+r
r with

y1, . . . , ym−1 square-free and pairwise coprime.

Lemma (Pieropan-S 2020)

Let d > 0 be square-free, m ≥ 2. Then

]{1 ≤ y ≤ B : y is m − full, d | y}

∼ cmB
1
m

∏
p|d

(
1 + p − p

m−1
m

)−1
.
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Counting Campana points

Let X = Pn−1, ∆ = ∪ni=0Di with Di = {xi = 0}, 0 ≤ i ≤ n − 1,
and Dn = {c0x0 + . . .+ cn−1xn−1 = 0}, for c0, . . . , cn−1 ∈ Z \ {0}.

Theorem (Browning-Yamagishi 2019)

Assume that m0, . . . ,mn ≥ 2 such that there exists j ∈ {0, . . . , n}
with ∑

0≤i≤n
i 6=j

1

mi (mi + 1)
≥ 1.

Then

]{x ∈ (X ,∆,m)(Z) : Hnaiv (x) ≤ B} ∼ cB
∑n

i=0
1
mi
−1
.

Note

KPn−1 +
n∑

i=0

(
1− 1

mi

)
Di ∼

(
1−

n∑
i=0

1

mi

)
H.
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Counting Campana points

Question

Conjectures for the growth of the number of Campana points of
bounded height?

Conjecture (Manin-Peyre)

Let V be a smooth projective Fano variety over a number field k
such that V (k) is dense in V . Then there exists a thin subset Z
such that

]{x ∈ V (k) \ Z : Hω−1
X

(x) ≤ B} ∼ cB(logB)rk(Pic(X ))−1.
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Manin-type conjecture for Campana points

Assume that (X ,D,m)(Ok,S) is Zariski-dense in X (and not thin),
and let L be an ample line bundle on X .

Conjecture (Pieropan-Smeets-Tanimoto-Varilly-Alvarado 2019)

There exists a thin set Z such that

]{x ∈ (X ,D,m)(Ok,S) \ Z : HL(x) ≤ B} ∼ cBa(logB)b−1,

where c is a product of local densities,

a = inf{t ∈ R : tL + KX +
n∑

i=1

(
1− 1

mi

)
Di is effective },

and b is the codimension of the minimal face of the effective cone
that contains aL + KX +

∑n
i=1

(
1− 1

mi

)
Di .
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Campana points on toric varieties

Theorem (Pieropan-S. 2020)

Let X be a split smooth proper toric variety over Q with boundary
divisor D = ∪si=1Di . Let mi ≥ 2 for 1 ≤ i ≤ s and assume that

L = −
(
KX +

∑s
i=1

(
1− 1

mi

)
Di

)
is ample + a technical condition

on L. Let r = rankPic(X ). Then

]{x ∈ (X ,D,m)(Z) : HL(x) ≤ B} ∼ cB(logB)r−1.

where c is compatible with the conjectured constant.

Remark

The technical condition holds for e.g. projective space, products of
projective spaces, blow-up of P2 in one point, and all smooth
projective toric varieties with rankPic(X ) ≥ dimX + 2.
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Campana points on toric varieties

Proof strategy:

Use Cox rings/universal torsor method

Generalized version of the Blomer-Brüdern hyperbola method

Future goals: allow for the removal of more general divisors,
consider hypersurfaces within toric varieties

Let Y → X be the universal torsor of X . Then
Y ⊂ As

Q = Spec(Q[yρ1 , . . . , yρs ]) is the open subvariety given by
the complement of

〈
∏
ρ/∈σ

yρ = 0, σ ∈ Σmax〉.
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Campana points on toric varieties

Let π : Y → X be an integral model of Y → X . By Salberger’s
work

π−1((X ,D,m))(Z) = {y ∈ Y(Z) : yi 6= 0, yi if mi−full, 1 ≤ i ≤ s}.

Remark

Finding y ∈ Y(Z) translates into finding tuples (y1, . . . , ys) ∈ Zs

with

gcd

∏
ρ/∈σ

yρ, σ ∈ Σmax

 = 1.
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The height function

Let L = −
(
KX +

∑s
i=1

(
1− 1

mi

)
Di

)
, and assume that L is

(very) ample.
For σ ∈ Σmax find a divisor L(σ) ∼ L with

L(σ) =
∑
ρi /∈σ

ασ,iDi .

Proposition

Let y ∈ Y (K ). Then

HL(π(y)) =
∏
ν∈Ωk

sup
σ∈Σmax

s∏
i=1

|yασ,ii |ν .
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The counting function

Goal

Asymptotically evaluate the counting function

N(B) =
1

2r
]{y ∈ Y(Z) : yi 6= 0, yi is mi − full, 1 ≤ i ≤ s,

max
σ∈Σmax

s∏
i=1

|yi |ασ,i ≤ B}.
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An example

Let X = P1 × P1.
The universal torsor Y ⊂ A4 = Spec(Q[x0, y0, x1, y1]) is given by
the complement of the subvariety given by 〈x0y0, y0x1, x1y1, y1x0〉,
i.e.

Y = A4 \ ({x0 = x1 = 0} ∪ {y0 = y1 = 0}) .

Take m1 = . . . = m4 = 2 and Kx = −
∑4

i=1 Di , i.e.
L = 1

2

∑4
i=1 Di . Then the height function for integral points

(x0, y0, x1, y1) ∈ Y(Z) is given by

HL(π(x0, y0, x1, y1)) = max (|y0x0|, |y0x1|, |y1x0|, |y1x1|)
= max (|x0|, |x1|) max(|y0|, |y1|).
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Expectation for the growth of N(B)

N(B) =
1

2r
]{y ∈ Y(Z) : yi 6= 0, yi is mi − full, 1 ≤ i ≤ s,

max
σ∈Σmax

s∏
i=1

|yi |ασ,i ≤ B}.

Idea: consider the contribution of a dyadic box

Bi ≤ yi < 2Bi , 1 ≤ i ≤ s.

Let Bi = Bti for ti ≥ 0. Then

]{(y1, . . . , ys) ∈ Z2 : yi ∼ Bi ,mi − full, 1 ≤ i ≤ s}

∼ C
s∏

i=1

B
1
mi
i ∼ CB

∑s
i=1

1
mi

ti .
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Expectation for the growth of N(B)

Idea: consider the contribution of a dyadic box

Bi ≤ yi < 2Bi , 1 ≤ i ≤ s.

For the height condition to hold

max
σ∈Σmax

s∏
i=1

|yi |ασ,i ≤ B

we consider boxes for which
s∏

i=1

B
ασ,i
i ≤ B, ∀σ ∈ Σmax.

I.e. we consider Bi = Bti , with
s∑

i=1

ασ,i ti ≤ 1, σ ∈ Σmax,

ti ≥ 0, 1 ≤ i ≤ s.
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Maximizing a linear function on a polytope

Let P ⊂ Rs be the polytope given by

s∑
i=1

ασ,i ti ≤ 1, σ ∈ Σmax,

ti ≥ 0, 1 ≤ i ≤ s.

Goal

Maximize the function
∑s

i=1
1
mi
ti on the polytope P.

linear programming problem

Remark

Expected log exponent = dimension of the face of the polytope P
where the max is attained.
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The conjectured exponent

The conjectured exponent

a = inf{t ∈ R : tL + KX +
s∑

i=1

(
1− 1

mi

)
is effective},

leads to the following linear programming problem.

Minimize the linear function
∑

σ∈Σmax
λσ subject to the conditions

λσ ≥ 0, σ ∈ Σmax∑
σ∈Σmax

λσαi ,σ ≥
1

mi
, 1 ≤ i ≤ s.
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Duality in linear programming

Theorem (Strong duality in linear programming)

Let A ∈ Matm×n(R), b ∈ Rm and c ∈ Rn.
P: Maximize ctx subject to

Ax ≤ b, x ≥ 0.

D: Minimize bty subject to

Aty ≥ c, y ≥ 0.

If P has a finite optimal solution then so does D and these two are
equal.
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A pair of dual linear programming problems

The exponent that we compute

Maximize the function
∑s

i=1
1
mi
ti subject to

s∑
i=1

ασ,i ti ≤ 1, σ ∈ Σmax,

ti ≥ 0, 1 ≤ i ≤ s.

The conjectured exponent

Minimize the linear function
∑

σ∈Σmax
λσ subject to the conditions

λσ ≥ 0, σ ∈ Σmax∑
σ∈Σmax

λσαi ,σ ≥
1

mi
, 1 ≤ i ≤ s.
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From box counting to hyperbola shapes

Let f : Ns → R≥0 be an arithmetic function. Assume that we
understand sums of f over boxes. Let B be a large real parameter,
K a finite index set and αi ,k ≥ 0 for 1 ≤ i ≤ s and k ∈ K.

Goal

Find an asymptotic for

S f :=
∑

∏s
i=1 y

αi,k
i ≤B, ∀k∈K

yi∈N,1≤i≤s

f (y).

Remark

We don’t assume any multiplicative structure for f .
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From box counting to hyperbola shapes

Property I

Assume that there are non-negative real constants Cf ,M ≤ Cf ,E

and δ > 0 and $i > 0, 1 ≤ i ≤ s such that for all
B1, . . . ,Bs ∈ R≥1 we have

∑
1≤yi≤Bi

1≤i≤s

f (y) = Cf ,M

s∏
i=1

B$i
i + O

(
Cf ,E

s∏
i=1

B$i
i

(
min

1≤i≤s
Bi

)−δ)

where the implied constant is independent of f .
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From box counting to hyperbola shapes

Property II

Assume that there are positive real numbers D and ν such that the
following holds. Let I ( {1, . . . , s} be a non-empty subset of
indices and fix some (yi )i∈I ∈ N|I|. Write yI for the vector
(yi )i∈ I and |yI | for its maximums norm. Then there is a
non-negative constant Cf ,M,I(yI) such that for all Bi ∈ R≥1,
i ∈ {1, . . . , s} \ I one has∑

1≤yi≤Bi , i /∈I

f (y) = Cf ,M,I(yI)
∏
i /∈I

B$i
i

+ O(Cf ,E |yI |D
∏
i /∈I

B$i
i (min

i /∈I
Bi )
−δ),

uniformly in |yI | ≤ (
∏

i /∈I Bi )
ν .
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From box counting to hyperbola shapes

Recall
S f :=

∑
∏s

i=1 y
αi,k
i ≤B, ∀k∈K

yi∈N,1≤i≤s

f (y).

Define the polyhedron P ⊂ Rs by

s∑
i=1

αi ,k$
−1
i ti ≤ 1, k ∈ K (0.1)

and
ti ≥ 0, 1 ≤ i ≤ s. (0.2)

The linear function
∑s

i=1 ti takes its maximal value on a face of P
which we call F . Write a for its maximal value.
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From box counting to hyperbola shapes

Theorem (Pieropan-S. 2020)

Let f : Ns → R≥0 satisfy Property I and Property II*.
Assume that P is bounded and non-degenerate, that F is not
contained in a coordinate hyperplane of Rs + a technical condition
on P. Let k = dimF . Then we have

S f = (s − 1− k)!Cf ,McP(logB)kBa

+ O
(
Cf ,E (log logB)s(logB)k−1Ba

)
.

Remark

The case |K| = 1, αi ,k = α > 0 for all 1 ≤ i ≤ s and k = s − 1 is
contained in the original work of Blomer and Brüdern on the
hyperbola method.
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On the proof

In the hyperbola method, Blomer and Brüdern use the
combinatorial identity

(1− t)s
∑

j1+...+js≤J
ji≥0

t j1+...+js = 1− tJ+1
s−1∑
l=0

(
J + l

l

)
(1− t)l ,

for t ∈ C and J ∈ N.

Problem

Replace the summation condition j1 + . . .+ js ≤ J by the
intersection of a lattice with a polytope.

Idea

Use lattice point counting arguments instead.
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Thanks

Thank you for listening!
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