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Integer Partitions

A partition A = (A1, Ao, ..., A\r) € ZF of an integer n > 0 satisfies

n=>A+A+- -+ A and AMZ>X>-- 2> >0

Example 5 = 1+1+14+1+41
= 241+1+1
= 2+4+2+1
= 3+1+1
= 3+2
= 441
= 9
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Integer Partitions

A partition A = (A, Ao, ..., A\r) € ZF of an integer n > 0 satisfies

n=>A+A+- -+ A and AMZ>X>-- 2> >0

» Number Theory
» Combinatorics

» Symmetric functions

» Representation Theory

» Physics
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Integer Partitions

A partition A = (A, Ao, ..., A\r) € ZF of an integer n > 0 satisfies

n=>A+A+- -+ A and AMZ>X>-- 2> >0

Main Goal Understand p(n,t) := # partitions of n with Ay — A\ =t
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Many excellent designs for a new banner were submitted. We will use the best of them in rotation.
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(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A008805 Triangular numbers repeated.
1,1, 3, 3, ¢, 6, 10, 10, 15, 15, 21, 21, 28, 28, 36, 36, 45, 45, 55, 55, 66, 66, 78, 78,
91, 91, 105, 105, 120, 120, 136, 136, 153, 153, 171, 171, 190, 1%0, 210, 210, 231, 231,
253, 253, 276, 276, 300, 300, 325 (list; graph; refs; listen; history; text; internal format)
OFFSET 0,3
COMMENTS Number of choices for nonnegative integers x,y,z such that x and y are even

and x+y+z = n.
a(n) = number of partitions of n+4 such that the differences between

greatest and smallest parts are 2: a(n-4) = A097364(n,2) for n>3. -
Reinhard Zumkeller, Aug 09 2004

1
| Search Hints
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(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A128508 Number of partitions p of n such that max(p)-min(p)=3.

Partitions with fixed differences between largest and smallest parts

o, o, 0, 0, 0, 1, 1, 3, 3, 7, 7, 12, 14, 20, 22, 32, 34, 45, 51, 63, 69, 87, 93, 112, 124,
144, 156, 184, 196, 225, 245, 275, 295, 335, 355, 396, 426, 468, 498, 552, 582, 637, 679,
735, 777, 847, 889, 960, 1016, 1088, 1144, 1232, 1288, 1377, 1449, 1539, 1611, 1719 (list;

graph; refs; listen; history; text; internal format)

OFFSET 0,8

COMMENTS See A008805 and A049820 for the numbers of partitions p of n such that
max(p)-min(p)=1 or 2, respectively.

LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000

FORMULA Conjecture. a(l)=0 and, for n>1, a(n+l)=a(n)+d(n), where d(n) is defined as

follows: d4=0,0,0,1,0 for n=1,...,5 and, for n>5, d(n)=d(n-2)+1 if n=6k or
n=6k+4, d(n)=d(n-2) if n=6k+1l or n=6k+3, d(n)=d(n-2)+2Floor[n/6] if n=6k+2
and d(n)=d(n-5) if n=6k+5.

Matthias Beck
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(Greetings from The On-Line Encyclopedia of Integer Sequences!)

A218573 Number of partitions p of n such that max(p)-min(p) = 10.
i, 1, 3, 3, 7, 8, 14, 18, 28, 35, 53, 67, 93, 119, 161, 201, 267, 332, 428, 531, 674, 824,
1034, 1258, 1552, 1877, 2294, 2749, 3332, 3970, 4762, 5645, 6723, 7916, 9367, 10974, 12894,
15036, 17571, 20381, 23696, 27370, 31652, 36416, 41926, 48029, 55071, 62860 (list; graph; refs;

listen; history; text; internal format)

OFFSET 12,3
LINKS Alois P. Heinz, Table of n, a(n) for n = 12..1000
FORMULA G.f.: Sum_{k>0} x"(2*k+10)/Product_{j=0..10} (1-x"(k+j)).

a(n) = A097364(n,10) = A116685(n,10) = A194621(n,10) - A194621(n,9) =

A218512(n) - A218511(n).
CROSSREFS Sequence in context: A218570 A218571 A218572 * Al117989 A241642 A086543
Adjacent sequences: A218570 A218571 A218572 * A218574 A218575 A218576
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Integer Partitions

A partition A = (A, Ao, ..., A\r) € ZF of an integer n > 0 satisfies

n=>A+A+- -+ A and AMZ>X>-- 2> >0

Main Goal Understand p(n,t) := # partitions of n with Ay — A\ =t

Equivalently, understand Pi(q) := Zp(n,t) q"
n>1
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Quasipolynomials

A quasipolynomial is a function Z — R of the form

q(k) = ca(k)k® + cqa_1 (k) kY1 4 - 4 co(k)

where cq(k), ..., cq(k) are periodic functions. Equivalently,
h(z)
Z q 1 _ Zp)d—i—l
k>0

for some (minimal) p € Z~q, where deg(h(z)) < (d+ 1)p

q* ¢+

(1-¢P31+q9?% (1—¢??

Example Px(q) =
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Quasipolynomials

A quasipolynomial is a function Z — R of the form

q(k) = cq(k) k% + ca1(k) kT + -+ ¢o(k)

where co(k), ..., cq(k) are periodic functions. Equivalently,
h(z)
Z q 1 _ zp)d—|—1
k>0

for some (minimal) p € Z~q, where deg(h(z)) < (d+ 1)p

4 440
q q +q
Example P>(q) = (1 —q)3(1 + q)? - (1—-¢%)°

2 T L

—_— — IT 70 IS even

pn2) = 4§ 1 o =(
] +§ Ifnls Odd

DN
NS |3
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Quasipolynomials

A quasipolynomial is a function Z — R of the form

q(k) = cq(k) k% + ca1 (k) + -+ co(k)

where cq(k), ..., cq(k) are periodic functions. Equivalently,
h(z)
Z q 1 _ Zp)d—i—l
k>0

for some (minimal) p € Z~q, where deg(h(z)) < (d+ 1)p

5 6 7 8
¢ +q9¢ +9 —¢q rn3—18n
(1—¢?)*(1 —¢°)? " — 3m 4 2
1 n> — 30n + 52
,3) = — X
p(n:3) = 103 Y n® 4+ on — 54
n> — 30n + 56

n> —3n — 2

Example Ps(q) =

\
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if n =0 mod 6
if n =1 mod 6
if n =2 mod 6
if n =3 mod 6
if n =4 mod 6
if n =5 mod 6
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Main Results

p(n,t) := # partitions of n with \; — A\ =1 Pi(q) := Zp(n, t)q"

Theorem (Andrews—MB—Robbins 2015) For ¢ > 1

o dTa-9 ¢
Fi(q) = A—g)(1—q 1) (A=gP20—g 2(1—g2)- (1-¢)

t

(=g =g 1)*(1—¢"2)--- (1 —q)

+
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Main Results

p(n,t) := # partitions of n with \; — A\ =1 Pi(q) := Zp(n, t)q"

n>1
Theorem (Andrews—MB—Robbins 2015) For ¢ > 1

o dTa-9 ¢
Fi(q) = A—g)(1—q 1) (A=gP20—g 2(1—g2)- (1-¢)

t

(=g =g 1)*(1—¢"2)--- (1 —q)

+

Corollary The function p(n,t) is a quasipolynomial in n of degree ¢ and
period lcm(1,2,...,1t).
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Main Results
p(n,t) := # partitions of n with Ay — A\ =t Pi(q) := Zp(n, t)q"

Theorem (Andrews—MB—Robbins 2015) For ¢t > 1

_ dTa-9 ¢
Pt(q) — (1 . qt)(l . qt—l) (1 _ qt)2(1 _ qt—1)2(1 _ qt—2) ... (1 _ q2)

t

1-¢)1 =g 1)1 -¢2)---(1-¢q)

_|_

Corollary  The function p(n,t) is a quasipolynomial in n of degree ¢ and
period lcm(1,2,...,¢t).

Corollary If t > 1 then p(n,t) =
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Main Results

p<(n,t) ;= # partitions of n with \; — X\ <t

P<i(q) = )  p<(n,t)q"

n>1
Corollary (Breuer—Kronholm 2016) For ¢ > 0

1 _1)
1-q¢)(1—=¢%)---(1—¢q 1 — ¢t

P<i(q) = (
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Partitions With Specified Distances

p(n,ti,ta, ... tx) := F partitions of n such that, if o is the smallest part
then o +t; + 12+ --- + t1 is the largest part and each of 0 +t1, 0 +t1 +
to, ..., o+11+to+ -+ 1r_1 appear as parts.

Ptl,...,tk(Q) L= Zp(na tla t27 SR 7tk) qn

n>1

Theorem (Andrews—MB—Robbins 2015)

o (—1)kq" 02 (25 2] (=1)7al"%) — (o)1)
t1,...,tp\qd) — [;] 1 — ¢ (q

wheret :=t1 4+ ---+tx >kand T :=kt;1 + (k— V)to+ -+ + 2t 1 + tg.

Here (A),, := (1 —A)(1—Aq)---(1 — Ag™ ') and {Z] — (¢9)n
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Proof ldea

qm 1 qm—|—2
Pyq) = >
_ am _ ~ym—+1 _ ym+2
et I—qm™1—gq 1 —gq
_ Z " Dm-1 _ q Z " (D (@) m
= (@Dmer (@) =1 (@Dm(q")m

7*(¢*) o (¢?) Z ¢ (q); ¢*(1—¢°)

(@3(a) (@) 5 (@)5(@); — (@s(1 - ¢?)

Partitions with fixed differences between largest and smallest parts Matthias Beck



Proof ldea

m 1 m—2
PQ(q) — Z:llgqml_qm+1lzqm+2
_ 2 q2m(Q)m—1 o Q_4 q2m(Q)m(Q)m
- %1 (Q)m—I—Z B (Q)S 21 (Q)m q4)m
(%) (e) 3 (@); _ (1-q)
(@)3(4") o0 (%) 0 =5 (0)i(a°);  (0)s(1 —¢?)

Heine's Transform Z (@) (0)m 2™ _ (5) o0 (02) Z (a—bz)j(b)j(%)j
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Extensions

» Breuer—Kronholm (2016): polyhedral model

» Chapman (2016): elementary proof

» Chern (2017): 3-variable generalization

» Chern (2017), Chern—Yee (2018): overpartitions
» Berkovich-Uncu (2019): partition inequalities

» Lin (2020): refinement by number of parts
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Quasipolynomials in Nature

Very Basic Problem Given ® € Z"*" (of rank r), enumerate all solutions
x € 27, to the system of eqations ®x = 0.

These solutions form a semigroup S. If x € S satisfies
nx =y+y = y=jx, y=Mn-j)x

for any n € Z~g and y,y’ € S then x is completely fundamental. We
collect the completely fundamental elements of .S in the set CF(S).
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Quasipolynomials in Nature

Very Basic Problem Given ® € Z"*" (of rank r), enumerate all solutions
x € 27, to the system of eqations ®x = 0.

These solutions form a semigroup S. If x € § satisfies
nx =y+y = y=jx, y=Mn-j)x

for any n € Z~g and y,y’ € S then x is completely fundamental. We
collect the completely fundamental elements of .S in the set CF(S).

Theorem (Stanley 1973) The generating function Z z* = Z Zit e zim

™m
xeS xeS
can be written as a rational function with denominator H (1 —2%).
x€CF(5)
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Quasipolynomials in Nature

Very Basic Problem Given ® € Z"*" (of rank r), enumerate all solutions
x € 27, to the system of eqations ®x = 0.

These solutions form a semigroup S. If x € § satisfies
nx =y+y = y=jx, y=Mn-j)x

for any n € Z~g and y,y’ € S then x is completely fundamental. We
collect the completely fundamental elements of .S in the set CF(S).

Theorem (Stanley 1973) The generating function Z z* = Z Zit e zim

™m
xeS xeS
can be written as a rational function with denominator H (1 —2%).
x€CF(5)

My Favorite Interpretation S are the integer lattice points in the rational
cone {x € RY,: Ax =0}
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Partitions Done Geometrically

P<i(q) := Z # (partitions of n with Ay — A\, < t)¢"

n>1

Corollary (Breuer—Kronholm 2016) For ¢t > 0

m

PSt(Q)

q
2 (1 —=gm)(1 —gmtt)--- (1 —gmt)

((1—Q)(1—q12)°"(1—qt)_1) 1—1(1’5

Natural Question Is there a (geometric) reason why this infinite sum of
rational functions simplifies to a single rational function?
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Partitions Done Geometrically

Corollary (Breuer—Kronholm 2016) For ¢ > 0

q
Pgt(Q) — Z (1 . qm)(l _ qm—l—l) e (1 _ qm—i—t)

m>1

- <(1—Q)(1—q12)“'(1—qt)_1) 1—1qt
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Partitions Done Geometrically

Corollary (Breuer—Kronholm 2016) For ¢t > 0

m

q
P<i(q) = Z (1 —gm)(1 —gmT1)... (1 —gm+?t)

m>1

((1—Q)(1—q12)“'(1—qt)_1> 1—1qt

» Follows from a polyhedral model: partitions are precisely the integer
points in a ¢ + 1-dimensional (half-open, simplicial) cone.

» Leads to a natural bijective proof and...

Theorem (Breuer—Kronholm 2016) p<(n,t) equals the number of pairs
(A, k) where k > 0 is divisible by ¢ and A is a non-empty partition of n — k
with largest part at most t.
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