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Integer Partitions

A partition λ = (λ1, λ2, . . . , λk) ∈ Zk of an integer n > 0 satisfies

n = λ1 + λ2 + · · ·+ λk and λ1 ≥ λ2 ≥ · · · ≥ λk > 0

Example 5 = 1 + 1 + 1 + 1 + 1

= 2 + 1 + 1 + 1

= 2 + 2 + 1

= 3 + 1 + 1

= 3 + 2

= 4 + 1

= 5
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Integer Partitions

A partition λ = (λ1, λ2, . . . , λk) ∈ Zk of an integer n > 0 satisfies

n = λ1 + λ2 + · · ·+ λk and λ1 ≥ λ2 ≥ · · · ≥ λk > 0

I Number Theory

I Combinatorics

I Symmetric functions

I Representation Theory

I Physics
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Integer Partitions

A partition λ = (λ1, λ2, . . . , λk) ∈ Zk of an integer n > 0 satisfies

n = λ1 + λ2 + · · ·+ λk and λ1 ≥ λ2 ≥ · · · ≥ λk > 0

Main Goal Understand p(n, t) := # partitions of n with λ1 − λk = t
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Integer Partitions

A partition λ = (λ1, λ2, . . . , λk) ∈ Zk of an integer n > 0 satisfies

n = λ1 + λ2 + · · ·+ λk and λ1 ≥ λ2 ≥ · · · ≥ λk > 0

Main Goal Understand p(n, t) := # partitions of n with λ1 − λk = t

Equivalently, understand Pt(q) :=
∑
n≥1

p(n, t) qn
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Quasipolynomials

A quasipolynomial is a function Z→ R of the form

q(k) = cd(k) kd + cd−1(k) kd−1 + · · ·+ c0(k)

where c0(k), . . . , cd(k) are periodic functions. Equivalently,∑
k≥0

q(k) zk =
h(z)

(1− zp)d+1

for some (minimal) p ∈ Z>0, where deg(h(z)) < (d+ 1)p

Example P2(q) =
q4

(1− q)3(1 + q)2
=

q4 + q5

(1− q2)3
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Quasipolynomials

A quasipolynomial is a function Z→ R of the form

q(k) = cd(k) kd + cd−1(k) kd−1 + · · ·+ c0(k)

where c0(k), . . . , cd(k) are periodic functions. Equivalently,∑
k≥0

q(k) zk =
h(z)

(1− zp)d+1

for some (minimal) p ∈ Z>0, where deg(h(z)) < (d+ 1)p

Example P2(q) =
q4

(1− q)3(1 + q)2
=

q4 + q5

(1− q2)3

p(n, 2) =

{
n2

8 −
n
4 if n is even

n2

8 −
n
2 + 3

8 if n is odd
=

(⌊n
2

⌋
2

)
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Quasipolynomials

A quasipolynomial is a function Z→ R of the form

q(k) = cd(k) kd + cd−1(k) kd−1 + · · ·+ c0(k)

where c0(k), . . . , cd(k) are periodic functions. Equivalently,∑
k≥0

q(k) zk =
h(z)

(1− zp)d+1

for some (minimal) p ∈ Z>0, where deg(h(z)) < (d+ 1)p

Example P3(q) =
q5 + q6 + q7 − q8

(1− q2)2(1− q3)2

p(n, 3) =
1

108
×



n3 − 18n if n ≡ 0 mod 6

n3 − 3n + 2 if n ≡ 1 mod 6

n3 − 30n + 52 if n ≡ 2 mod 6

n3 + 9n− 54 if n ≡ 3 mod 6

n3 − 30n + 56 if n ≡ 4 mod 6

n3 − 3n− 2 if n ≡ 5 mod 6
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Main Results

p(n, t) := # partitions of n with λ1− λk = t Pt(q) :=
∑
n≥1

p(n, t) qn

Theorem (Andrews–MB–Robbins 2015) For t > 1

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1

(1− qt)2(1− qt−1)2(1− qt−2) · · · (1− q2)

+
qt

(1− qt)(1− qt−1)2(1− qt−2) · · · (1− q)
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Main Results

p(n, t) := # partitions of n with λ1− λk = t Pt(q) :=
∑
n≥1

p(n, t) qn

Theorem (Andrews–MB–Robbins 2015) For t > 1

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1

(1− qt)2(1− qt−1)2(1− qt−2) · · · (1− q2)

+
qt

(1− qt)(1− qt−1)2(1− qt−2) · · · (1− q)

Corollary The function p(n, t) is a quasipolynomial in n of degree t and
period lcm(1, 2, . . . , t).
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Main Results

p(n, t) := # partitions of n with λ1− λk = t Pt(q) :=
∑
n≥1

p(n, t) qn

Theorem (Andrews–MB–Robbins 2015) For t > 1

Pt(q) =
qt−1(1− q)

(1− qt)(1− qt−1)
− qt−1

(1− qt)2(1− qt−1)2(1− qt−2) · · · (1− q2)

+
qt

(1− qt)(1− qt−1)2(1− qt−2) · · · (1− q)

Corollary The function p(n, t) is a quasipolynomial in n of degree t and
period lcm(1, 2, . . . , t).

Corollary If t > 1 then p(n, t) =
nt

t (t!)2
+O(nt−1) as n→∞.
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Main Results

p≤(n, t) := # partitions of n with λ1 − λk ≤ t

P≤t(q) :=
∑
n≥1

p≤(n, t) qn

Corollary (Breuer–Kronholm 2016) For t > 0

P≤t(q) =

(
1

(1− q)(1− q2) · · · (1− qt)
− 1

)
1

1− qt
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Partitions With Specified Distances

p(n, t1, t2, . . . , tk) := # partitions of n such that, if σ is the smallest part
then σ + t1 + t2 + · · ·+ tk is the largest part and each of σ + t1, σ + t1 +
t2, . . . , σ + t1 + t2 + · · ·+ tk−1 appear as parts.

Pt1,...,tk(q) :=
∑
n≥1

p(n, t1, t2, . . . , tk) qn

Theorem (Andrews–MB–Robbins 2015)

Pt1,...,tk(q) =
(−1)kqT−(k+1

2 )
(∑k

j=0

[
t
j

]
(−1)jq(

j+1
2 ) − (q)t

)
[
t−1
k

]
(1− qt)(q)t

where t := t1 + · · ·+ tk > k and T := kt1 + (k − 1)t2 + · · ·+ 2tk−1 + tk.

Here (A)m := (1−A)(1−Aq) · · · (1−Aqm−1) and
[n
k

]
:=

(q)n
(q)k(q)n−k
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Proof Idea

P2(q) =
∑
m≥1

qm

1− qm
1

1− qm+1

qm+2

1− qm+2

= q2
∑
m≥1

q2m(q)m−1
(q)m+2

=
q4

(q)3

∑
m≥1

q2m(q)m(q)m
(q)m(q4)m

=
q4(q3)∞(q3)∞

(q)3(q4)∞(q2)∞

∑
j≥0

q3j(q)j
(q)j(q3)j

=
q4(1− q3)

(q)3(1− q2)
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Proof Idea

P2(q) =
∑
m≥1

qm

1− qm
1

1− qm+1

qm+2

1− qm+2

= q2
∑
m≥1

q2m(q)m−1
(q)m+2

=
q4

(q)3

∑
m≥1

q2m(q)m(q)m
(q)m(q4)m

=
q4(q3)∞(q3)∞

(q)3(q4)∞(q2)∞

∑
j≥0

q3j(q)j
(q)j(q3)j

=
q4(1− q3)

(q)3(1− q2)

Heine’s Transform
∑
m≥0

(a)m(b)m z
m

(q)m(c)m
=

(cb)∞(bz)∞

(c)∞(z)∞

∑
j≥0

(abzc )j(b)j(
c
b)

j

(q)j(bz)j
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Extensions

I Breuer–Kronholm (2016): polyhedral model

I Chapman (2016): elementary proof

I Chern (2017): 3-variable generalization

I Chern (2017), Chern–Yee (2018): overpartitions

I Berkovich–Uncu (2019): partition inequalities

I Lin (2020): refinement by number of parts
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Quasipolynomials in Nature

Very Basic Problem Given Φ ∈ Zr×m (of rank r), enumerate all solutions
x ∈ Zm

≥0 to the system of eqations Φx = 0.

These solutions form a semigroup S. If x ∈ S satisfies

nx = y + y′ =⇒ y = j x, y = (n− j)x

for any n ∈ Z>0 and y,y′ ∈ S then x is completely fundamental . We
collect the completely fundamental elements of S in the set CF(S).
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Quasipolynomials in Nature

Very Basic Problem Given Φ ∈ Zr×m (of rank r), enumerate all solutions
x ∈ Zm

≥0 to the system of eqations Φx = 0.

These solutions form a semigroup S. If x ∈ S satisfies

nx = y + y′ =⇒ y = j x, y = (n− j)x

for any n ∈ Z>0 and y,y′ ∈ S then x is completely fundamental . We
collect the completely fundamental elements of S in the set CF(S).

Theorem (Stanley 1973) The generating function
∑
x∈S

zx =
∑
x∈S

zx1
1 · · · zxm

m

can be written as a rational function with denominator
∏

x∈CF(S)

(1− zx) .
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Quasipolynomials in Nature

Very Basic Problem Given Φ ∈ Zr×m (of rank r), enumerate all solutions
x ∈ Zm

≥0 to the system of eqations Φx = 0.

These solutions form a semigroup S. If x ∈ S satisfies

nx = y + y′ =⇒ y = j x, y = (n− j)x

for any n ∈ Z>0 and y,y′ ∈ S then x is completely fundamental . We
collect the completely fundamental elements of S in the set CF(S).

Theorem (Stanley 1973) The generating function
∑
x∈S

zx =
∑
x∈S

zx1
1 · · · zxm

m

can be written as a rational function with denominator
∏

x∈CF(S)

(1− zx) .

My Favorite Interpretation S are the integer lattice points in the rational
cone

{
x ∈ Rd

≥0 : Ax = 0
}

Partitions with fixed differences between largest and smallest parts Matthias Beck



Partitions Done Geometrically

P≤t(q) :=
∑
n≥1

#(partitions of n with λ1 − λk ≤ t) qn

Corollary (Breuer–Kronholm 2016) For t > 0

P≤t(q) =
∑
m≥1

qm

(1− qm)(1− qm+1) · · · (1− qm+t)

=

(
1

(1− q)(1− q2) · · · (1− qt)
− 1

)
1

1− qt

Natural Question Is there a (geometric) reason why this infinite sum of
rational functions simplifies to a single rational function?
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Partitions Done Geometrically

Corollary (Breuer–Kronholm 2016) For t > 0

P≤t(q) =
∑
m≥1

qm

(1− qm)(1− qm+1) · · · (1− qm+t)

=

(
1

(1− q)(1− q2) · · · (1− qt)
− 1

)
1

1− qt

t = 0 t = 1
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Partitions Done Geometrically

Corollary (Breuer–Kronholm 2016) For t > 0

P≤t(q) =
∑
m≥1

qm

(1− qm)(1− qm+1) · · · (1− qm+t)

=

(
1

(1− q)(1− q2) · · · (1− qt)
− 1

)
1

1− qt

I Follows from a polyhedral model: partitions are precisely the integer
points in a t+ 1-dimensional (half-open, simplicial) cone.

I Leads to a natural bijective proof and...

Theorem (Breuer–Kronholm 2016) p≤(n, t) equals the number of pairs
(λ, k) where k ≥ 0 is divisible by t and λ is a non-empty partition of n− k
with largest part at most t.
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