Variants of Lehmer's Conjecture

J. Balakrishnan, W. Craig, K. Ono, and W.-L. Tsai

"On CERTAIN ARITHMETICAL FUNCTIONS" (1916)

1. Ramanujan's Tau-function

"On CERTAIN ARITHMETICAL FUNCTIONS" (1916)

Srinivasa Ramanujan
Ramanujan defined the tau-function with the infinite product

$$
\begin{aligned}
\sum_{n=1}^{\infty} \tau(n) q^{n}: & =q\left(\left(1-q^{1}\right)\left(1-q^{2}\right)\left(1-q^{3}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\right)^{24} \\
& =q-24 q^{2}+252 q^{3}-1472 q^{4}+4830 q^{5}-6048 q^{6}-\ldots
\end{aligned}
$$

The Prototype

FACT

The function $\Delta(z):=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}$ is a weight 12 modular (cusp) form for $\mathrm{SL}_{2}(\mathbb{Z})$.

The Prototype

FACT

The function $\Delta(z):=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}$ is a weight 12 modular (cusp) form for $\mathrm{SL}_{2}(\mathbb{Z})$.

For $\operatorname{Im}(z)>0$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, this means that

$$
\Delta\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{12} \Delta(z)
$$

The Prototype

FACT

The function $\Delta(z):=\sum_{n=1}^{\infty} \tau(n) e^{2 \pi i n z}$ is a weight 12 modular (cusp) form for $\mathrm{SL}_{2}(\mathbb{Z})$.

For $\operatorname{Im}(z)>0$ and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, this means that

$$
\Delta\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{12} \Delta(z)
$$

Ubiquity of functions like $\Delta(z)$

- Arithmetic Geometry: Elliptic curves, BSD Conjecture,...
- Number Theory: Partitions, Quad. forms, ...
- Mathematical Physics: Mirror symmetry,...
- Representation Theory: Moonshine, symmetric groups,...

Testing ground (Hecke operators)

Theorem (Mordell (1917))
The following are true:
(1) If $\operatorname{gcd}(n, m)=1$, then $\tau(n m)=\tau(n) \tau(m)$.

Testing ground (Hecke operators)

Theorem (Mordell (1917))

The following are true:
(1) If $\operatorname{gcd}(n, m)=1$, then $\tau(n m)=\tau(n) \tau(m)$.
(2) If p is prime, then $\tau\left(p^{m}\right)=\tau(p) \tau\left(p^{m-1}\right)-p^{11} \tau\left(p^{m-2}\right)$.

Testing ground (Hecke operators)

Theorem (Mordell (1917))

The following are true:
(1) If $\operatorname{gcd}(n, m)=1$, then $\tau(n m)=\tau(n) \tau(m)$.
(2. If p is prime, then $\tau\left(p^{m}\right)=\tau(p) \tau\left(p^{m-1}\right)-p^{11} \tau\left(p^{m-2}\right)$.

Structure of Modular form spaces

- (30s) Theory of Hecke operators (linear endomorphisms)

Testing ground (Hecke operators)

Theorem (Mordell (1917))

The following are true:
(1) If $\operatorname{gcd}(n, m)=1$, then $\tau(n m)=\tau(n) \tau(m)$.
(2) If p is prime, then $\tau\left(p^{m}\right)=\tau(p) \tau\left(p^{m-1}\right)-p^{11} \tau\left(p^{m-2}\right)$.

Structure of Modular form spaces

- (30s) Theory of Hecke operators (linear endomorphisms)
- (70s) Atkin-Lehner Theory of newforms (i.e. eigenforms)

Testing ground (Galois representations)

Theorem (Ramanujan (1916)) If we let $\sigma_{\nu}(n):=\sum_{d \mid n} d^{\nu}$, then

Testing ground (Galois representations)

Theorem (Ramanujan (1916)) If we let $\sigma_{\nu}(n):=\sum_{d \mid n} d^{\nu}$, then

$$
\tau(n) \equiv \begin{cases}n^{2} \sigma_{1}(n) & (\bmod 3) \\ n \sigma_{1}(n) & (\bmod 5) \\ n \sigma_{3}(n) & (\bmod 7) \\ \sigma_{11}(n) & (\bmod 691)\end{cases}
$$

Testing ground (Galois representations)

Theorem (Ramanujan (1916))
If we let $\sigma_{\nu}(n):=\sum_{d \mid n} d^{\nu}$, then

$$
\tau(n) \equiv \begin{cases}n^{2} \sigma_{1}(n) & (\bmod 3) \\ n \sigma_{1}(n) & (\bmod 5) \\ n \sigma_{3}(n) & (\bmod 7) \\ \sigma_{11}(n) & (\bmod 691)\end{cases}
$$

Dawn of Galois Representations

- (Serre \& Deligne, 70s) Reformulated using representations

$$
\rho_{\Delta, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

Testing ground (Galois representations)

Theorem (Ramanujan (1916))
If we let $\sigma_{\nu}(n):=\sum_{d \mid n} d^{\nu}$, then

$$
\tau(n) \equiv \begin{cases}n^{2} \sigma_{1}(n) & (\bmod 3) \\ n \sigma_{1}(n) & (\bmod 5) \\ n \sigma_{3}(n) & (\bmod 7) \\ \sigma_{11}(n) & (\bmod 691)\end{cases}
$$

Dawn of Galois Representations

- (Serre \& Deligne, 70s) Reformulated using representations

$$
\rho_{\Delta, \ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right) .
$$

- (Wiles, 90s) Used to prove Fermat's Last Theorem.

Testing ground (Ramanujan's Conjecture)

Conjecture (Ramanujan (1916))

For primes p we have $|\tau(p)| \leq 2 p^{\frac{11}{2}}$.

1. Ramanujan's Tau-function

Testing ground (Ramanujan's Conjecture)

Conjecture (Ramanujan (1916))

For primes p we have $|\tau(p)| \leq 2 p^{\frac{11}{2}}$.

Dawn of Ramanujan-Petersson

- (Deligne's Fields Medal (1978))

Proof of the Weil Conjectures \Longrightarrow Ramanujan's Conjecture.

1. Ramanujan's Tau-function

Testing ground (Ramanujan's Conjecture)

Conjecture (Ramanujan (1916))

For primes p we have $|\tau(p)| \leq 2 p^{\frac{11}{2}}$.

Dawn of Ramanujan-Petersson

- (Deligne's Fields Medal (1978))

Proof of the Weil Conjectures \Longrightarrow Ramanujan's Conjecture.

- (Ramanujan-Petersson) Generalized to newforms and generic automorphic forms.

2. Lehmer's Conjecture

Lehmer's Conjecture

D. H. Lehmer
2. Lehmer's Conjecture

Lehmer's Conjecture

D. H. Lehmer

Conjecture (Lehmer (1947))
For every $n \geq 1$ we have $\tau(n) \neq 0$.
2. Lehmer's Conjecture

Results on Lehmer's Conjecture

Theorem (Lehmer (1947)) If $\tau(n)=0$, then n is prime.

2. Lehmer's Conjecture

Results on Lehmer's Conjecture

Theorem (LEHMER (1947))
If $\tau(n)=0$, then n is prime.

Theorem (Serre (81), Thorner-Zaman (2018))
We have that

$$
\#\{\text { prime } p \leq X: \tau(p)=0\} \ll \pi(X) \cdot \frac{(\log \log X)^{2}}{\log (X)}
$$

2. Lehmer's Conjecture

Results on Lehmer's Conjecture

Theorem (Lehmer (1947))

If $\tau(n)=0$, then n is prime.

Theorem (Serre (81), Thorner-Zaman (2018))

We have that

$$
\#\{\text { prime } p \leq X: \tau(p)=0\} \ll \pi(X) \cdot \frac{(\log \log X)^{2}}{\log (X)}
$$

Namely, the set of p for which $\tau(p)=0$ has density zero.

Numerical Investigations

N	reference
3316799	Lehmer (1947)
214928639999	Lehmer (1949)
10^{15}	Serre (1973, p. 98), Serre (1985)
1213229187071998	Jennings (1993)
22689242781695999	Jordan and Kelly (1999)
22798241520242687999	Bosman (2007)
982149821766199295999	Zeng and Yin (2013)
816212624008487344127999	Derickx, van Hoeij, and Zeng (2013)

Lehmer's Conjecture confirmed for $n \leq N$

Variants of Lehmer's Conjecture
2. Lehmer's Conjecture

VARIANT: VARYING NEWFORMS AND FIXING p

2. Lehmer's Conjecture

VARIANT: VARYING NEWFORMS AND FIXING p

Theorem (Calegari, Sardari (2020))

Fix a prime p and level N coprime to p.
2. Lehmer's Conjecture

VARIANT: VARYING NEWFORMS AND FIXING p

Theorem (Calegari, Sardari (2020))

Fix a prime p and level N coprime to p. At most finitely many non-CM level N newforms

$$
f=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n}
$$

have $a_{f}(p)=0$.

Variants of Lehmer's Conjecture
2. Lehmer's Conjecture

VARIANT: CAN $\tau(n)=\alpha$?

2. Lehmer's Conjecture

VARIANT: CAN $\tau(n)=\alpha$?

Theorem (Murty, Murty, Shorey (1987))
For odd integers α, there are at most finitely many n for which

$$
\tau(n)=\alpha
$$

2. Lehmer's Conjecture

VARIANT: CAN $\tau(n)=\alpha$?

Theorem (Murty, Murty, Shorey (1987))
For odd integers α, there are at most finitely many n for which

$$
\tau(n)=\alpha .
$$

REmARKs

(1) Computationally prohibitive (i.e. "linear forms in logs").
2. Lehmer's Conjecture

VARIANT: CAN $\tau(n)=\alpha$?

Theorem (Murty, Murty, Shorey (1987))

For odd integers α, there are at most finitely many n for which

$$
\tau(n)=\alpha .
$$

REMARKS

(1) Computationally prohibitive (i.e. "linear forms in logs").
(2) (Lygeros and Rozier, 2013) If $n>1$, then $\tau(n) \neq \pm 1$.
2. Lehmer's Conjecture

VARIANT: CAN $\tau(n)=\alpha$?

Theorem (Murty, Murty, Shorey (1987))

For odd integers α, there are at most finitely many n for which

$$
\tau(n)=\alpha .
$$

REMARKS

(1) Computationally prohibitive (i.e. "linear forms in logs").
(2) (Lygeros and Rozier, 2013) If $n>1$, then $\tau(n) \neq \pm 1$.
(3) Classifying soln's to $\tau(n)=\alpha$ not done in any other cases.

CAN $|\tau(n)|=\ell^{m}$, A POWER OF AN ODD PRIME?

Theorem (B-C-O-T) If $|\tau(n)|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ are odd primes.
3. Our Results

CAN $|\tau(n)|=\ell^{m}$, A POWER OF AN ODD PRIME?

Theorem (B-C-O-T)
If $|\tau(n)|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ are odd primes.

AlGORITHM FOR SOLVING $\tau(n)= \pm \ell^{m}$.
3. Our Results

CAN $|\tau(n)|=\ell^{m}$, A POWER OF AN ODD PRIME?

Theorem (B-C-O-T)
If $|\tau(n)|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ are odd primes.

AlGORITHM FOR SOLVING $\tau(n)= \pm \ell^{m}$.
(1) List the finitely many odd primes $d \mid \ell\left(\ell^{2}-1\right)$.
3. Our Results

CAN $|\tau(n)|=\ell^{m}$, A POWER OF AN ODD PRIME?

Theorem (B-C-O-T)
If $|\tau(n)|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ are odd primes.

ALGORITHM FOR SOLVING $\tau(n)= \pm \ell^{m}$.
(1) List the finitely many odd primes $d \mid \ell\left(\ell^{2}-1\right)$.
(2) For each d, simply solve $\tau\left(p^{d-1}\right)= \pm \ell^{m}$ for primes p.

A SATISFYING RESULT

Theorem (B-C-O-T + UVA REU)
For $n>1$ we have

$$
\tau(n) \notin\{ \pm 1, \pm 691\} \cup\{ \pm \ell: 3 \leq \ell<100 \text { prime }\}
$$

A SATISFYING RESULT

Theorem (B-C-O-T + UVA REU)

For $n>1$ we have

$$
\tau(n) \notin\{ \pm 1, \pm 691\} \cup\{ \pm \ell: 3 \leq \ell<100 \text { prime }\}
$$

Remark (UVA REU)

These results have been extended to $|\tau(n)|=\alpha$ odd.

General Results

Our Setting

Let $f \in S_{2 k}(N)$ be a level N weight $2 k$ newform with

$$
f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \cap \mathbb{Z}[[q]] \quad\left(q:=e^{2 \pi i z}\right)
$$

and trivial mod 2 residual Galois representation.

General Results

Our Setting

Let $f \in S_{2 k}(N)$ be a level N weight $2 k$ newform with

$$
f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \cap \mathbb{Z}[[q]] \quad\left(q:=e^{2 \pi i z}\right)
$$

and trivial mod 2 residual Galois representation.

REmark (MOD 2 CONDITION?)

- The condition "essentially" means that $a_{f}(n)$ is odd $\Longleftrightarrow n$ is an odd square.

General Results

Our Setting

Let $f \in S_{2 k}(N)$ be a level N weight $2 k$ newform with

$$
f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \cap \mathbb{Z}[[q]] \quad\left(q:=e^{2 \pi i z}\right)
$$

and trivial mod 2 residual Galois representation.

REmark (MOD 2 CONDITION?)

- The condition "essentially" means that $a_{f}(n)$ is odd $\Longleftrightarrow n$ is an odd square.
- Elliptic curves E / \mathbb{Q} with a rational 2-torsion point.

General Results

Our Setting

Let $f \in S_{2 k}(N)$ be a level N weight $2 k$ newform with

$$
f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \cap \mathbb{Z}[[q]] \quad\left(q:=e^{2 \pi i z}\right)
$$

and trivial mod 2 residual Galois representation.

REmark (MOD 2 CONDITION?)

- The condition "essentially" means that $a_{f}(n)$ is odd $\Longleftrightarrow n$ is an odd square.
- Elliptic curves E / \mathbb{Q} with a rational 2-torsion point.
- All forms of level $2^{a} M$ with $a \geq 0$ and $M \in\{1,3,5,15,17\}$.

General Results (ℓ An odd prime)

Theorem (B-C-O-T)

Suppose that $2 k \geq 4$ and $a_{f}(2)$ is even. If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ odd primes.

General Results (ℓ An odd prime)

Theorem (B-C-O-T)

Suppose that $2 k \geq 4$ and $a_{f}(2)$ is even.
If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ odd primes.

Corollary (B-C-O-T)

If $\operatorname{gcd}(3 \cdot 5,2 k-1) \neq 1$ and $2 k \geq 12$, then

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell<37 \text { prime }\} \cup\{-37\} .
$$

General Results (ℓ An odd prime)

Theorem (B-C-O-T)

Suppose that $2 k \geq 4$ and $a_{f}(2)$ is even.
If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with p and $d \mid \ell\left(\ell^{2}-1\right)$ odd primes.

Corollary (B-C-O-T)

If $\operatorname{gcd}(3 \cdot 5,2 k-1) \neq 1$ and $2 k \geq 12$, then

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell<37 \text { prime }\} \cup\{-37\} .
$$

Assuming GRH, we have

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell \leq 97 \text { prime with } \ell \neq 37\} \cup\{-37\} .
$$

Remarks and an Example

Remarks

(1) Analogous conclusions probably don't hold for $2 k=2$.

Remarks and an Example

Remarks

(1) Analogous conclusions probably don't hold for $2 k=2$.
(2) The method actually locates possible Fourier coefficients.

Remarks and an Example

Remarks

(1) Analogous conclusions probably don't hold for $2 k=2$.
(2) The method actually locates possible Fourier coefficients. For $2 k=4$ the only potential counterexamples are:

$$
\begin{array}{ll}
a_{f}\left(3^{2}\right)=37, & a_{f}\left(3^{2}\right)=-11, \quad a_{f}\left(3^{2}\right)=-23, \\
a_{f}\left(3^{4}\right)=19, & a_{f}\left(5^{2}\right)=19, a_{f}\left(7^{2}\right)=-19 \\
a_{f}\left(7^{4}\right)=11, & a_{f}\left(17^{2}\right)=-13, \quad a_{f}\left(43^{2}\right)=17 .
\end{array}
$$

Remarks and an Example

Remarks

(1) Analogous conclusions probably don't hold for $2 k=2$.
(2) The method actually locates possible Fourier coefficients. For $2 k=4$ the only potential counterexamples are:

$$
\begin{array}{ll}
a_{f}\left(3^{2}\right)=37, & a_{f}\left(3^{2}\right)=-11, \quad a_{f}\left(3^{2}\right)=-23, \\
a_{f}\left(3^{4}\right)=19, & a_{f}\left(5^{2}\right)=19, a_{f}\left(7^{2}\right)=-19 \\
a_{f}\left(7^{4}\right)=11, & a_{f}\left(17^{2}\right)=-13, \quad a_{f}\left(43^{2}\right)=17 .
\end{array}
$$

For $2 k=16$ we have $a_{f}\left(3^{2}\right)=37$ is the only possible exception.

Remarks and an Example

Remarks

(1) Analogous conclusions probably don't hold for $2 k=2$.
(2) The method actually locates possible Fourier coefficients. For $2 k=4$ the only potential counterexamples are:

$$
\begin{aligned}
& a_{f}\left(3^{2}\right)=37, \quad a_{f}\left(3^{2}\right)=-11, \quad a_{f}\left(3^{2}\right)=-23 \\
& a_{f}\left(3^{4}\right)=19, \quad a_{f}\left(5^{2}\right)=19, a_{f}\left(7^{2}\right)=-19 \\
& a_{f}\left(7^{4}\right)=11, \quad a_{f}\left(17^{2}\right)=-13, \quad a_{f}\left(43^{2}\right)=17
\end{aligned}
$$

For $2 k=16$ we have $a_{f}\left(3^{2}\right)=37$ is the only possible exception.
(3) UVA REU will study odd wt, Nebentypus, and general α.

Variants of Lehmer's Conjecture
3. Our Results

Example: The weight 16 Hecke eigenform

Example: The weight 16 Hecke eigenform

Example

The Hecke eigenform $E_{4} \Delta$

$$
E_{4}(z) \Delta(z):=\left(1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}\right) \cdot \Delta(z)
$$

has no coefficients with absolute value $3 \leq \ell \leq 37$ (GRH $\Longrightarrow \ell \leq 97$.)

Variants of Lehmer's Conjecture
3. Our Results

CAN α BE A COEFFICIENT FOR LARGE WEIGHTS?

CAN α BE A COEFFICIENT FOR LARGE WEIGHTS?

Theorem (B-C-O-T)
For prime powers ℓ^{m}, if f has weight $2 k>M^{ \pm}(\ell, m)=O_{\ell}(m)$, then

$$
a_{f}(n) \neq \pm \ell^{m} .
$$

CAN α BE A COEFFICIENT FOR LARGE WEIGHTS?

Theorem (B-C-O-T)
For prime powers ℓ^{m}, if f has weight $2 k>M^{ \pm}(\ell, m)=O_{\ell}(m)$, then

$$
a_{f}(n) \neq \pm \ell^{m} .
$$

Example

We have $M^{ \pm}(3, m)=2 m+\sqrt{m} \cdot 10^{32}$.

PRIMALITY OF $\tau(n)$

Theorem (Lehmer (1965))

There are prime values of $\tau(n)$.

PRIMALITY OF $\tau(n)$

Theorem (LEHMER (1965))

There are prime values of $\tau(n)$.Namely, we have that

$$
\tau\left(251^{2}\right)=80561663527802406257321747
$$

PRIMALITY OF $\tau(n)$

Theorem (LEHMER (1965))

There are prime values of $\tau(n)$.Namely, we have that

$$
\tau\left(251^{2}\right)=80561663527802406257321747
$$

REMARK

In 2013 Lygeros and Rozier found further prime values of $\tau(n)$.

Number of Prime Divisors of $\tau(n)$

Notation

$\Omega(n):=$ number of prime divisors of n with multiplicity
$\omega(n):=$ number of distinct prime divisors of n

Number of Prime Divisors of $\tau(n)$

Notation

$\Omega(n):=$ number of prime divisors of n with multiplicity
$\omega(n):=$ number of distinct prime divisors of n

Theorem (B-C-O-T)

If $n>1$ is an integer, then

$$
\Omega(\tau(n)) \geq \sum_{\substack{p \mid n \\ \text { prime }}}\left(\sigma_{0}\left(\operatorname{ord}_{p}(n)+1\right)-1\right) \geq \omega(n)
$$

REMARKS

Remarks

(1) Lehmer's prime example shows that this bound is sharp as

$$
\Omega\left(\tau\left(251^{2}\right)\right)=\sigma_{0}(2+1)-1=1
$$

REMARKS

Remarks

(1) Lehmer's prime example shows that this bound is sharp as

$$
\Omega\left(\tau\left(251^{2}\right)\right)=\sigma_{0}(2+1)-1=1
$$

(2) A generalization exists for newforms with integer coefficients and trivial residual mod 2 Galois representation.

Variants of Lehmer's Conjecture
4. "Lehmer Variant Proof"

SOLVING $|\tau(n)|=\ell$ AN ODD PRIME

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2)
$$

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2) . \\
& \Longrightarrow n=(2 k+1)^{2}
\end{aligned}
$$

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2)
$$

$\Longrightarrow n=(2 k+1)^{2}$ and by Hecke multiplicativity $\Longrightarrow n=p^{2 t}$.
4. "Lehmer Variant Proof"

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2)
$$

$\Longrightarrow n=(2 k+1)^{2}$ and by Hecke multiplicativity $\Longrightarrow n=p^{2 t}$.
(2) Hecke-Mordell gives the recurrence in m :

$$
\tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-2}\right)
$$

4. "Lehmer Variant Proof"

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2)
$$

$\Longrightarrow n=(2 k+1)^{2}$ and by Hecke multiplicativity $\Longrightarrow n=p^{2 t}$.
(2) Hecke-Mordell gives the recurrence in m :

$$
\begin{gathered}
\tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-2}\right) \\
\Longrightarrow \quad\left\{1=\tau\left(p^{0}\right), \tau(p), \tau\left(p^{2}\right), \tau\left(p^{3}\right), \ldots\right\} \text { is periodic modulo } \ell .
\end{gathered}
$$

4. "Lehmer Variant Proof"

Solving $|\tau(n)|=\ell$ AN ODD PRIME

(1) By Jacobi's identity (or trivial mod 2 Galois rep'n), we have:

$$
\sum_{n=1}^{\infty} \tau(n) q^{n} \equiv q \prod_{n=1}^{\infty}\left(1-q^{8 n}\right)^{3}=\sum_{k=0}^{\infty} q^{(2 k+1)^{2}} \quad(\bmod 2)
$$

$\Longrightarrow n=(2 k+1)^{2}$ and by Hecke multiplicativity $\Longrightarrow n=p^{2 t}$.
(2) Hecke-Mordell gives the recurrence in m :

$$
\tau\left(p^{m+1}\right)=\tau(p) \tau\left(p^{m}\right)-p^{11} \tau\left(p^{m-2}\right)
$$

$\Longrightarrow \quad\left\{1=\tau\left(p^{0}\right), \tau(p), \tau\left(p^{2}\right), \tau\left(p^{3}\right), \ldots\right\}$ is periodic modulo ℓ.
(3) The first time $\ell \mid \tau\left(p^{d-1}\right)$ has $d \mid \ell\left(\ell^{2}-1\right)$.

STRATEGY CONTINUED...

(4) Big Claim. Every term in $\left\{\tau(p), \tau\left(p^{2}\right), \ldots\right\}$ is divisible by a prime that does not divide any previous term.

STRATEGY CONTINUED...

(4) Big Claim. Every term in $\left\{\tau(p), \tau\left(p^{2}\right), \ldots\right\}$ is divisible by a prime that does not divide any previous term. Big Claim $\Longrightarrow\left|\tau\left(p^{2 t}\right)\right|=\ell$ requires that $2 t=d-1$.
4. "Lehmer Variant Proof"

Strategy continued...

(4) Big Claim. Every term in $\left\{\tau(p), \tau\left(p^{2}\right), \ldots\right\}$ is divisible
by a prime that does not divide any previous term. Big Claim $\Longrightarrow\left|\tau\left(p^{2 t}\right)\right|=\ell$ requires that $2 t=d-1$.
(5) EZ divisibility properties $+\operatorname{Big}$ Claim $\Longrightarrow d$ is prime.
4. "Lehmer Variant Proof"

STRATEGY CONTINUED...

(4) Big Claim. Every term in $\left\{\tau(p), \tau\left(p^{2}\right), \ldots\right\}$ is divisible
by a prime that does not divide any previous term.
Big Claim $\Longrightarrow\left|\tau\left(p^{2 t}\right)\right|=\ell$ requires that $2 t=d-1$.
(5) EZ divisibility properties $+\operatorname{Big}$ Claim $\Longrightarrow d$ is prime.
(6) For the finitely many odd primes $d \mid \ell\left(\ell^{2}-1\right)$, solve for p

$$
\tau\left(p^{d-1}\right)= \pm \ell
$$

4. "Lehmer Variant Proof"

STRATEGY CONTINUED...

(4) Big Claim. Every term in $\left\{\tau(p), \tau\left(p^{2}\right), \ldots\right\}$ is divisible by a prime that does not divide any previous term. Big Claim $\Longrightarrow\left|\tau\left(p^{2 t}\right)\right|=\ell$ requires that $2 t=d-1$.
(5) EZ divisibility properties $+\operatorname{Big}$ Claim $\Longrightarrow d$ is prime.
(6) For the finitely many odd primes $d \mid \ell\left(\ell^{2}-1\right)$, solve for p

$$
\tau\left(p^{d-1}\right)= \pm \ell
$$

(7) Any soln gives an integer point on a genus $g \geq 1$ algebraic curve, which by Siegel has finitely many (if any) integer points.

Primitive Prime Divisors

Definition

A term $a(n)$ in an integer sequence $\{a(1), a(2), \ldots\}$ has a primitive prime divisor if there is a prime ℓ for which TFAT:

Primitive Prime Divisors

Definition

A term $a(n)$ in an integer sequence $\{a(1), a(2), \ldots\}$ has a primitive prime divisor if there is a prime ℓ for which TFAT:
(1) We have $\ell \mid a(n)$.
(2) We have $\ell \nmid a(1) a(2) \cdots a(n-1)$.

Primitive Prime Divisors

Definition

A term $a(n)$ in an integer sequence $\{a(1), a(2), \ldots\}$ has a primitive prime divisor if there is a prime ℓ for which TFAT:
(1) We have $\ell \mid a(n)$.
(2) We have $\ell \nmid a(1) a(2) \cdots a(n-1)$.

Otherwise, $a(n)$ is said to be defective.

Primitive Prime Divisors

Definition

A term $a(n)$ in an integer sequence $\{a(1), a(2), \ldots\}$ has a primitive prime divisor if there is a prime ℓ for which TFAT:
(1) We have $\ell \mid a(n)$.
(2) We have $\ell \nmid a(1) a(2) \cdots a(n-1)$.

Otherwise, $a(n)$ is said to be defective.

Example (Carmichael 1913)

The Fibonacci numbers in red are defective:

$$
1,1,2,3,5,8,13,21,34,55,89,144,233,377, \ldots
$$

$F_{12}=144$ is the last defective one!

LUCAS SEQUENCES

Definition

Suppose that α and β are algebraic integers for which TFAT:
(1) $\alpha+\beta$ and $\alpha \beta$ are relatively prime non-zero integers.

LUCAS SEQUENCES

Definition

Suppose that α and β are algebraic integers for which TFAT:
(1) $\alpha+\beta$ and $\alpha \beta$ are relatively prime non-zero integers.
(2) We have that α / β is not a root of unity.

LUCAS SEQUENCES

Definition

Suppose that α and β are algebraic integers for which TFAT:
(1) $\alpha+\beta$ and $\alpha \beta$ are relatively prime non-zero integers.
(2) We have that α / β is not a root of unity.

Their Lucas numbers $\left\{u_{n}(\alpha, \beta)\right\}=\left\{u_{1}=1, u_{2}=\alpha+\beta, \ldots\right\}$ are:

$$
u_{n}(\alpha, \beta):=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \in \mathbb{Z}
$$

Primitive Prime Divisors

Theorem (Bilu, Hanrot, Voutier (2001))
Lucas numbers $u_{n}(\alpha, \beta)$, with $n>30$, have primitive prime divisors.
J. Balakrishnan, W. Craig, K. Ono, and W.-L. Tsai

Primitive Prime Divisors

Theorem (Bilu, Hanrot, Voutier (2001))

Lucas numbers $u_{n}(\alpha, \beta)$, with $n>30$, have primitive prime divisors.

Theorem (B-H-V (2001), Abouzaid (2006))
A classification of defective Lucas numbers is obtained:

Primitive Prime Divisors

Theorem (Bilu, Hanrot, Voutier (2001))
Lucas numbers $u_{n}(\alpha, \beta)$, with $n>30$, have primitive prime divisors.

Theorem (B-H-V (2001), Abouzaid (2006))
A classification of defective Lucas numbers is obtained:

- Finitely many sporadic sequences
- Explicit parameterized infinite families.

Relevant Lucas Sequences

Definition

A Lucas sequence $u_{n}(\alpha, \beta)$ is potentially weight $2 k$ modular at a prime p if TFAT:

Relevant Lucas Sequences

Definition

A Lucas sequence $u_{n}(\alpha, \beta)$ is potentially weight $2 k$ modular at a prime p if TFAT:
(1) We have $B:=\alpha \beta=p^{2 k-1}$.
(2) We have that $A:=\alpha+\beta$ satisfies $|A| \leq 2 p^{\frac{2 k-1}{2}}$.

Relevant Lucas Sequences

Definition

A Lucas sequence $u_{n}(\alpha, \beta)$ is potentially weight $2 k$ modular at a prime p if TFAT:
(1) We have $B:=\alpha \beta=p^{2 k-1}$.
(2) We have that $A:=\alpha+\beta$ satisfies $|A| \leq 2 p^{\frac{2 k-1}{2}}$.

Corollary (Brute Force)

The potentially modular defective Lucas numbers have been classified.

(A, B)	Defective $u_{n}(\alpha, \beta)$
$\left(\pm 1,2^{1}\right)$	$u_{5}=-1, u_{7}=7, u_{8}=\mp 3, u_{12}= \pm 45$,
$u_{13}=-1, u_{18}= \pm 85, u_{30}=\mp 24475$	
$\left(\pm 1,3^{1}\right)$	$u_{5}=1, u_{12}= \pm 160$
$\left(\pm 1,5^{1}\right)$	$u_{7}=1, u_{12}=\mp 3024$
$\left(\pm 2,3^{1}\right)$	$u_{3}=1, u_{10}=\mp 22$
$\left(\pm 2,7^{1}\right)$	$u_{8}=\mp 40$
$\left(\pm 2,11^{1}\right)$	$u_{5}=5$
$\left(\pm 5,7^{1}\right)$	$u_{10}=\mp 3725$
$\left(\pm 3,2^{3}\right)$	$u_{3}=1$
$\left(\pm 5,2^{3}\right)$	$u_{6}= \pm 85$

Table 1. Sporadic examples of defective $u_{n}(\alpha, \beta)$ satisfying (2.2)

(A, B)	Defective $u_{n}(\alpha, \beta)$
$\left(\pm 1,2^{1}\right)$	$u_{5}=-1, u_{7}=7, u_{8}=\mp 3, u_{12}= \pm 45$ $u_{13}=-1, u_{18}= \pm 85, u_{30}=\mp 24475$ $\left(\pm 1,3^{1}\right)$$u_{5}=1, u_{12}= \pm 160$
$\left(\pm 1,5^{1}\right)$	$u_{7}=1, u_{12}=\mp 3024$
$\left(\pm 2,3^{1}\right)$	$u_{3}=1, u_{10}=\mp 22$
$\left(\pm 2,7^{1}\right)$	$u_{8}=\mp 40$
$\left(\pm 2,11^{1}\right)$	$u_{5}=5$
$\left(\pm 5,7^{1}\right)$	$u_{10}=\mp 3725$
$\left(\pm 3,2^{3}\right)$	$u_{3}=1$
$\left(\pm 5,2^{3}\right)$	$u_{6}= \pm 85$

TABLE 1. Sporadic examples of defective $u_{n}(\alpha, \beta)$ satisfying (2.2)

Remark

Since $(A, B)=\left(A, p^{2 k-1}\right)$, there are only two with weight $2 k \geq 4$.

$$
\begin{gathered}
B_{1, k}^{r, \pm}: Y^{2}=X^{2 k-1} \pm 3^{r}, \quad B_{2, k}: Y^{2}=2 X^{2 k-1}-1, \quad B_{3, k}^{ \pm}: Y^{2}=2 X^{2 k-1} \pm 2 \\
B_{4, k}^{r}: Y^{2}=3 X^{2 k-1}+(-2)^{r+2}, \quad B_{5, k}^{ \pm}: Y^{2}=3 X^{2 k-1} \pm 3, \quad B_{6, k}^{r, \pm}: Y^{2}=3 X^{2 k-1} \pm 3 \cdot 2^{r}
\end{gathered}
$$

(A, B)	Defective $u_{n}(\alpha, \beta)$	Constraints on parameters
$(\pm m, p)$	$u_{3}=-1$	$m>1$ and $p=m^{2}+1$
$\left(\pm m, p^{2 k-1}\right)$	$u_{3}=\varepsilon 3^{r}$	$\begin{gathered} (p, \pm m) \in B_{1, k}^{r, \varepsilon} \text { with } 3 \nmid m, \\ (\varepsilon, r, m) \neq(1,1,2), \text { and } m^{2} \geq 4 \varepsilon 3^{r-1} \end{gathered}$
$\left(\pm m, p^{2 k-1}\right)$	$u_{4}=\mp m$	$(p, \pm m) \in B_{2, k}$ with $m>1$ odd
$\left(\pm m, p^{2 k-1}\right)$	$u_{4}= \pm 2 \varepsilon m$	$\begin{gathered} (p, \pm m) \in B_{3, k}^{\varepsilon} \\ \text { with }(\varepsilon, m) \neq(1,2) \\ \text { and } m>2 \text { even } \end{gathered}$
$\left(\pm m, p^{2 k-1}\right)$	$u_{6}= \pm(-2)^{r} m\left(2 m^{2}+(-2)^{r}\right) / 3$	$\begin{aligned} (p, \pm m) & \in B_{4, k}^{r} \text { with } \operatorname{gcd}(m, 6)=1 \\ (r, m) & \neq(1,1), \text { and } m^{2} \geq(-2)^{r+2} \end{aligned}$
$\left(\pm m, p^{2 k-1}\right)$	$u_{6}= \pm \varepsilon m\left(2 m^{2}+3 \varepsilon\right)$	$(p, \pm m) \in B_{5, k}^{\varepsilon}$ with $3 \mid m$ and $m>3$
$\left(\pm m, p^{2 k-1}\right)$	$u_{6}= \pm 2^{r+1} \varepsilon m\left(m^{2}+3 \varepsilon \cdot 2^{r-1}\right)$	$\begin{array}{r} (p, \pm m) \in B_{6, k}^{r, \varepsilon} \text { with } m \equiv 3 \bmod 6 \\ \text { and } m^{2} \geq 3 \varepsilon \cdot 2^{r+2} \end{array}$

Table 2. Parameterized families of defective $u_{n}(\alpha, \beta)$ satisfying (2.2)
Notation: $m, k, r \in \mathbb{Z}^{+}, \varepsilon= \pm 1, p$ is a prime number.

Key Lemmas

Lemma (Relative Divisibility) If $d \mid n$, then $u_{d}(\alpha, \beta) \mid u_{n}(\alpha, \beta)$.
5. Primitive Prime Divisors of Lucas Sequences

Key Lemmas

Lemma (Relative Divisibility) If $d \mid n$, then $u_{d}(\alpha, \beta) \mid u_{n}(\alpha, \beta)$.

LEmMA (First ℓ-DIVISIBILITY)
We let $m_{\ell}(\alpha, \beta)$ be the smallest $n \geq 2$ for which $\ell \mid u_{n}(\alpha, \beta)$.
5. Primitive Prime Divisors of Lucas Sequences

Key Lemmas

Lemma (Relative Divisibility)

If $d \mid n$, then $u_{d}(\alpha, \beta) \mid u_{n}(\alpha, \beta)$.

LEmma (First ℓ-Divisibility)

We let $m_{\ell}(\alpha, \beta)$ be the smallest $n \geq 2$ for which $\ell \mid u_{n}(\alpha, \beta)$. If $\ell \nmid \alpha \beta$ is an odd prime with $m_{\ell}(\alpha, \beta)>2$, then $m_{\ell}(\alpha, \beta) \mid \ell\left(\ell^{2}-1\right)$.

Properties of Newforms

> THEOREM (ATKIN-LEHNER, DELIGNE)
> If $f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \in S_{2 k}(N) \cap \mathbb{Z}[[q]]$ is a newform, then TFAT.

Properties of Newforms

Theorem (Atkin-Lehner, Deligne)

If $f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \in S_{2 k}(N) \cap \mathbb{Z}[[q]]$ is a newform, then TFAT.
(1) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a_{f}\left(n_{1} n_{2}\right)=a_{f}\left(n_{1}\right) a_{f}\left(n_{2}\right)$.
6. Lucas sequences arising from newforms

Properties of Newforms

Theorem (Atkin-Lehner, Deligne)

If $f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \in S_{2 k}(N) \cap \mathbb{Z}[[q]]$ is a newform, then TFAT.
(1) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a_{f}\left(n_{1} n_{2}\right)=a_{f}\left(n_{1}\right) a_{f}\left(n_{2}\right)$.
(2) If $p \nmid N$ is prime and $m \geq 2$, then

$$
a_{f}\left(p^{m}\right)=a_{f}(p) a_{f}\left(p^{m-1}\right)-p^{2 k-1} a_{f}\left(p^{m-2}\right) .
$$

6. Lucas sequences arising from newforms

Properties of Newforms

Theorem (Atkin-Lehner, Deligne)

If $f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \in S_{2 k}(N) \cap \mathbb{Z}[[q]]$ is a newform, then TFAT.
(1) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a_{f}\left(n_{1} n_{2}\right)=a_{f}\left(n_{1}\right) a_{f}\left(n_{2}\right)$.
(2) If $p \nmid N$ is prime and $m \geq 2$, then

$$
a_{f}\left(p^{m}\right)=a_{f}(p) a_{f}\left(p^{m-1}\right)-p^{2 k-1} a_{f}\left(p^{m-2}\right)
$$

(3) If $p \nmid N$ is prime and α_{p} and β_{p} are roots of $F_{p}(x):=x^{2}-a_{f}(p) x+p^{2 k-1}$, then

$$
a_{f}\left(p^{m}\right)=u_{m+1}\left(\alpha_{p}, \beta_{p}\right)=\frac{\alpha_{p}^{m+1}-\beta_{p}^{m+1}}{\alpha_{p}-\beta_{p}} .
$$

6. Lucas sequences arising from newforms

Properties of Newforms

Theorem (Atkin-Lehner, Deligne)

If $f(z)=q+\sum_{n=2}^{\infty} a_{f}(n) q^{n} \in S_{2 k}(N) \cap \mathbb{Z}[[q]]$ is a newform, then TFAT.
(1) If $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then $a_{f}\left(n_{1} n_{2}\right)=a_{f}\left(n_{1}\right) a_{f}\left(n_{2}\right)$.
(2) If $p \nmid N$ is prime and $m \geq 2$, then

$$
a_{f}\left(p^{m}\right)=a_{f}(p) a_{f}\left(p^{m-1}\right)-p^{2 k-1} a_{f}\left(p^{m-2}\right)
$$

(3) If $p \nmid N$ is prime and α_{p} and β_{p} are roots of $F_{p}(x):=x^{2}-a_{f}(p) x+p^{2 k-1}$, then

$$
a_{f}\left(p^{m}\right)=u_{m+1}\left(\alpha_{p}, \beta_{p}\right)=\frac{\alpha_{p}^{m+1}-\beta_{p}^{m+1}}{\alpha_{p}-\beta_{p}} .
$$

(9) We have $\left|a_{f}(p)\right| \leq 2 p^{\frac{2 k-1}{2}}$.

Variants of Lehmer's Conjecture
6. Lucas sequences arising from newforms

"Strategy for Lehmer Variants Revisited"

"Strategy for Lehmer Variants Revisited"

(1) Suppose that $\left|a_{f}(n)\right|=\ell$.
(2) Hecke multiplicativity $\Longrightarrow n=p^{t}$ a prime power.
(3) Trivial mod 2 Galois + Hecke $a_{f}\left(p^{m}\right)$ recursion $\Longrightarrow n=p^{2 m}$.

"Strategy for Lehmer Variants Revisited"

(1) Suppose that $\left|a_{f}(n)\right|=\ell$.
(2) Hecke multiplicativity $\Longrightarrow n=p^{t}$ a prime power.
(3) Trivial mod 2 Galois + Hecke $a_{f}\left(p^{m}\right)$ recursion $\Longrightarrow n=p^{2 m}$.
(4) Note that $a_{f}\left(p^{2 m}\right)=u_{2 m+1}\left(\alpha_{p}, \beta_{p}\right)$.
6. Lucas sequences arising from newforms

"Strategy for Lehmer Variants Revisited"

(1) Suppose that $\left|a_{f}(n)\right|=\ell$.
(2) Hecke multiplicativity $\Longrightarrow n=p^{t}$ a prime power.
(3) Trivial mod 2 Galois + Hecke $a_{f}\left(p^{m}\right)$ recursion $\Longrightarrow n=p^{2 m}$.
(4) Note that $a_{f}\left(p^{2 m}\right)=u_{2 m+1}\left(\alpha_{p}, \beta_{p}\right)$.
(5) Rule out defective Lucas numbers using the classification.
(6) "Relative divisibility" and "First ℓ-divisbility" of $u_{n}\left(\alpha_{p}, \beta_{p}\right)$ $\Longrightarrow 2 m+1=d$ odd prime with $d \mid \ell\left(\ell^{2}-1\right)$.
6. Lucas sequences arising from newforms

"Strategy for Lehmer Variants Revisited"

(1) Suppose that $\left|a_{f}(n)\right|=\ell$.
(2) Hecke multiplicativity $\Longrightarrow n=p^{t}$ a prime power.
(3) Trivial mod 2 Galois + Hecke $a_{f}\left(p^{m}\right)$ recursion $\Longrightarrow n=p^{2 m}$.
(4) Note that $a_{f}\left(p^{2 m}\right)=u_{2 m+1}\left(\alpha_{p}, \beta_{p}\right)$.
(5) Rule out defective Lucas numbers using the classification.
(6) "Relative divisibility" and "First ℓ-divisbility" of $u_{n}\left(\alpha_{p}, \beta_{p}\right)$ $\Longrightarrow 2 m+1=d$ odd prime with $d \mid \ell\left(\ell^{2}-1\right)$.
(7) For each $d \mid \ell\left(\ell^{2}-1\right)$ classify integer points for the "curve"

$$
a_{f}\left(p^{d-1}\right)= \pm \ell .
$$

FORMULAS FOR $a_{f}\left(p^{2}\right)$ AND $a_{f}\left(p^{4}\right)$

Lemma

TFAT.

(1) If $a_{f}\left(p^{2}\right)=\alpha$, then $\left(p, a_{f}(p)\right)$ is an integer point on

$$
Y^{2}=X^{2 k-1}+\alpha .
$$

FORMULAS FOR $a_{f}\left(p^{2}\right)$ AND $a_{f}\left(p^{4}\right)$

Lemma

TFAT.

(1) If $a_{f}\left(p^{2}\right)=\alpha$, then $\left(p, a_{f}(p)\right)$ is an integer point on

$$
Y^{2}=X^{2 k-1}+\alpha .
$$

(2) If $a_{f}\left(p^{4}\right)=\alpha$, then $\left(p, 2 a_{f}(p)^{2}-3 p^{2 k-1}\right)$ is an integer point on

$$
Y^{2}=5 X^{2(2 k-1)}+4 \alpha .
$$

FORMULAS FOR $a_{f}\left(p^{2 m}\right)$ FOR $m \geq 3$

Definition

In terms of the generating function

$$
\frac{1}{1-\sqrt{Y} T+X T^{2}}=: \sum_{m=0}^{\infty} F_{m}(X, Y) \cdot T^{m}=1+\sqrt{Y} \cdot T+\ldots
$$

7. Integer Points on Special Curves

FORMULAS FOR $a_{f}\left(p^{2 m}\right)$ FOR $m \geq 3$

Definition

In terms of the generating function

$$
\frac{1}{1-\sqrt{Y} T+X T^{2}}=: \sum_{m=0}^{\infty} F_{m}(X, Y) \cdot T^{m}=1+\sqrt{Y} \cdot T+\ldots
$$

we have the special cyclotomic Thue polynomials

$$
F_{2 m}(X, Y)=\prod_{k=1}^{m}\left(Y-4 X \cos ^{2}\left(\frac{\pi k}{2 m+1}\right)\right)
$$

7. Integer Points on Special Curves

FORMULAS FOR $a_{f}\left(p^{2 m}\right)$ FOR $m \geq 3$

Definition

In terms of the generating function

$$
\frac{1}{1-\sqrt{Y} T+X T^{2}}=: \sum_{m=0}^{\infty} F_{m}(X, Y) \cdot T^{m}=1+\sqrt{Y} \cdot T+\ldots
$$

we have the special cyclotomic Thue polynomials

$$
F_{2 m}(X, Y)=\prod_{k=1}^{m}\left(Y-4 X \cos ^{2}\left(\frac{\pi k}{2 m+1}\right)\right) .
$$

Lemma

If f is a newform, then

$$
a_{f}\left(p^{2 m}\right)=F_{2 m}\left(p^{2 k-1}, a_{f}(p)^{2}\right) .
$$

Explicit Example

Theorem (B-C-O-T + UVA REU)
For $n>1$ we have

$$
\tau(n) \notin\{ \pm 1, \pm 691\} \cup\{ \pm \ell: 3 \leq \ell<100 \text { prime }\} .
$$

Variants of Lehmer's Conjecture
7. Integer Points on Special Curves

Sketch of the Proof

Variants of Lehmer's Conjecture
7. Integer Points on Special Curves

Sketch of the Proof

Proof.

(1) For each prime ℓ list odd primes $d \mid \ell\left(\ell^{2}-1\right)$.

Sketch of the Proof

Proof.

(1) For each prime ℓ list odd primes $d \mid \ell\left(\ell^{2}-1\right)$.
(2) We must rule out $\tau\left(p^{d-1}\right)= \pm \ell$.

Sketch of the Proof

Proof.

(1) For each prime ℓ list odd primes $d \mid \ell\left(\ell^{2}-1\right)$.
(2) We must rule out $\tau\left(p^{d-1}\right)= \pm \ell$.
(3) Otherwise, there is a special integer point on:

- Elliptic and hyperelliptic curves (for $a_{f}\left(p^{2}\right) \& a_{f}\left(p^{4}\right)$)
- Solution to a Thue equation $\left(F_{2 m}=a_{f}\left(p^{2 m}\right)\right.$ for $\left.m \geq 3\right)$.

Sketch of the Proof

Proof.

(1) For each prime ℓ list odd primes $d \mid \ell\left(\ell^{2}-1\right)$.
(2) We must rule out $\tau\left(p^{d-1}\right)= \pm \ell$.
(3) Otherwise, there is a special integer point on:

- Elliptic and hyperelliptic curves (for $a_{f}\left(p^{2}\right) \& a_{f}\left(p^{4}\right)$)
- Solution to a Thue equation $\left(F_{2 m}=a_{f}\left(p^{2 m}\right)\right.$ for $\left.m \geq 3\right)$.
(1) Use Galois rep'ns + Mordell-Weil + Chabauty-Coleman + facts about Thue eqns to rule these out (a lot here).

Summary: Number of Prime Divisors

Theorem (B-C-O-T)
If $n>1$ is an integer, then

$$
\Omega(\tau(n)) \geq \sum_{\substack{p \mid n \\ \text { prime }}}\left(\sigma_{0}\left(\operatorname{ord}_{p}(n)+1\right)-1\right) \geq \omega(n)
$$

Summary: Number of Prime Divisors

Theorem (B-C-O-T)
If $n>1$ is an integer, then

$$
\Omega(\tau(n)) \geq \sum_{\substack{p \mid n \\ \text { prime }}}\left(\sigma_{0}\left(\operatorname{ord}_{p}(n)+1\right)-1\right) \geq \omega(n)
$$

REMARKS

(1) This lower bound is sharp.

Summary: Number of Prime Divisors

Theorem (B-C-O-T)
If $n>1$ is an integer, then

$$
\Omega(\tau(n)) \geq \sum_{\substack{p \mid n \\ \text { prime }}}\left(\sigma_{0}\left(\operatorname{ord}_{p}(n)+1\right)-1\right) \geq \omega(n)
$$

REMARKS

(1) This lower bound is sharp.
(2) "Same" result when the mod 2 Galois rep'n is trivial.

Variants of Lehmer's Conjecture
8. Summary

Summary: Trivial mod 2 newforms

Summary: Trivial mod 2 newforms

```
Theorem (B-C-O-T)
If 2k\geq4 and }\mp@subsup{a}{f}{}(2)\mathrm{ is even, then TFAT:
```


Summary: Trivial mod 2 Newforms

Theorem (B-C-O-T)

If $2 k \geq 4$ and $a_{f}(2)$ is even, then TFAT:

1. If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with odd primes $d \mid \ell\left(\ell^{2}-1\right)$ and p.

Summary: Trivial mod 2 Newforms

Theorem (B-C-O-T)

If $2 k \geq 4$ and $a_{f}(2)$ is even, then TFAT:

1. If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with odd primes $d \mid \ell\left(\ell^{2}-1\right)$ and p.
2. If $\operatorname{gcd}(3 \cdot 5,2 k-1) \neq 1$ and $n>1$, then

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell<37\} \cup\{-37\} .
$$

Summary: Trivial mod 2 Newforms

Theorem (B-C-O-T)

If $2 k \geq 4$ and $a_{f}(2)$ is even, then TFAT:

1. If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with odd primes $d \mid \ell\left(\ell^{2}-1\right)$ and p.
2. If $\operatorname{gcd}(3 \cdot 5,2 k-1) \neq 1$ and $n>1$, then

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell<37\} \cup\{-37\} .
$$

Assuming GRH, we have

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell \leq 97 \text { prime with } \ell \neq 37\} \cup\{-37\} .
$$

Summary: Trivial mod 2 Newforms

Theorem (B-C-O-T)

If $2 k \geq 4$ and $a_{f}(2)$ is even, then TFAT:

1. If $\left|a_{f}(n)\right|=\ell^{m}$, then $n=p^{d-1}$, with odd primes $d \mid \ell\left(\ell^{2}-1\right)$ and p.
2. If $\operatorname{gcd}(3 \cdot 5,2 k-1) \neq 1$ and $n>1$, then

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell<37\} \cup\{-37\} .
$$

Assuming GRH, we have

$$
a_{f}(n) \notin\{ \pm 1\} \cup\{ \pm \ell: 3 \leq \ell \leq 97 \text { prime with } \ell \neq 37\} \cup\{-37\} .
$$

Theorem (B-C-O-T)

For prime powers ℓ^{m}, if f has weight $2 k>M^{ \pm}(\ell, m)=O_{\ell}(m)$, then

$$
a_{f}(n) \neq \pm \ell^{m}
$$

